

Variable frequency drive Vector V800

User manual
Version 5.4


## Contents

Chapter 1 ..... 1
Safety instructions ..... 1
1.0 Description of name plate ..... 2
1.1 Technical parameters ..... 3
1.2 Instructions for selecting an inverter ..... 6
1.3 Selected performance parameters of the V800 ..... 7
1.4 Table of suitable braking resistors ..... 8
1.5 Dimensional specifications of frame sizes A2S and A4T 0.4 kW - 2.2 kW ..... 9
1.6 Dimensional specifications of frame sizes B2S and B4T $2.2 \mathrm{~kW}-7.5 \mathrm{~kW}$ ..... 10
1.7 Dimensional specifications of $C$ frame sizes 11 kW and 15 kW ..... 11
1.8 Dimensional specifications of frame sizes D 18.5 kW - 30 kW ..... 12
1.9 Dimensional specifications of E frame sizes 37 kW and 45 kW ..... 13
1.10 Dimensional specifications of frame sizes F 55 kW to 160 kW ..... 14
1.11 Dimensional specifications of frame sizes G 200 kW ..... 15
1.12 Openings for mounting the external control panel ..... 16
Chapter 2 Installation and wiring ..... 17
2.1 Environment and installation requirements ..... 17
2.2 Connection of inverter V 800 to power grid ..... 17
2.2.1 Description of peripheral devices ..... 17
2.2.2 Measures for connecting the main circuit ..... 18
2.3.1 Conditions for connecting the inverter and cabling ..... 19
2.3.2 Basic wiring diagram $V 800-2 \mathrm{~S}$ and 4 T , equipment type $R$ ..... 20
Control terminal block for equipment type $R$ models ..... 22
2.3.3 Basic wiring diagram V 800 - 2 S , equipment type $S$ ..... 24
Control terminal block for equipment type $S$ models ..... 26
2.3.4 Basic wiring diagram V $800-4 \mathrm{~T}$. equipment type $T$ ..... 28
Control terminal block for equipment type T models ..... 30
2.3.5 Basic wiring diagram V $800-4 \mathrm{~T}$, equipment type U ..... 32
Control terminal block for equipment type US models ..... 34
2.3.6 Basic wiring diagram V 800 - 4T, equipment type V ..... 36
Control terminal block for equipment type V models ..... 38
2.3.7 Power terminal blocks V 800 and their description ..... 39
Chapter 3 Operation ..... 41
3.1 Description of the single-line digital panel ..... 41
3.1.1 Picture of the panel for models $0.4 \mathrm{~kW}-30 \mathrm{~kW}$ ..... 41
3.1.2 The descriptions of the button's function ..... 41
3.1.3 The descriptions of the light indicator ..... 42
3.2 Description of the two-line digital panel ..... 43
3.2.1 Picture of the panel for models 37 kW - 200 kW ..... 43
3.3 Operation ..... 45
3.3.1 Parameter setting ..... 45
3.3.2 RESET errors ..... 46
3.4 First start ..... 46
3.4.1 First start for a V/F driven drive ..... 46
3.4.2 First boot for the drive controlled by the SFVC method ..... 47
3.5 Inverter operation ..... 47
3.5.1 Initialization during power-on ..... 47
3.5.2 Standby status of the inverter ..... 48
3.5.3 Inverter operation ..... 48
3.5.4 Fault messages ..... 48
3.5.5 Setting PTC and TK of motor thermal protection ..... 48
3.6 Quick start-up ..... 49
Example 1: first start in V/F control mode ..... 50
Example 2: first start in SFVC control mode ..... 51
Chapter 4: List of function parameters - abbreviated ..... 52
Group PO: Basic parameters ..... 52
Group P1: Start / Stop control ..... 55
Group P2: Motor parameters ..... 57
Group P3: Vector control parameters ..... 58
Group P4: V/F control parameters ..... 60
Group P5: Input terminals X ..... 62
Group P6: Output terminals ..... 67
Group P7: Control panel and display ..... 69
Group P8: Auxiliary functions ..... 72
Group P9: Faults and protection ..... 75
Group PA: PID process control functions ..... 81
Group PB: Variable frequency, fixed length and count ..... 84
Group PC: Multiple functions and simple PLC function ..... 85
Group PD: Communication parameters ..... 89
Group PF: Reserved for service purposes ..... 89
Group PP: Restoring the factory setting and blocking the change of parameters ..... 90
Group C0: Torque control and parameter limitation ..... 90
Group C5: Control optimization parameters ..... 91
Group C6: FI curve setting (FI is FIV or FIC) ..... 91
Group C9: Special function PID ..... 92
Group CC: Correction of $\mathrm{FI} / \mathrm{FO}$ values ..... 93
Group DO: Monitoring parameters. ..... 94
Example No. 1 Parameterizations of inverse control 10 V to 0 V ..... 96
Example No. 2 Parameterization of braking resistance ..... 96
Example No. 3 Parameterizations for the control of the el. motor of the crane ..... 97
Example No. 4 Application PID ..... 98
Example No. 5 High-speed spindle operation parameters ..... 98
Chapter 5: Detailed description of parameters ..... 99
Group PO: Basic parameters ..... 99
Group P1: Start / Stop control ..... 110
Group P2: Motor parameters ..... 116
Group P3: Vector control parameters ..... 118
Group P4: V/F control parameters ..... 121
Group P5: Input terminals ..... 127
Group P6: Output terminals ..... 139
Group P7: Control panel and display ..... 144
Group P8: Auxiliary functions ..... 149
Group P9: Faults and protection ..... 161
Group PA: PID process control functions ..... 169
Group PB: Variable frequency, fixed length and count ..... 176
Group PC: Multiple functions and simple PLC function ..... 178
Group PD: Communication parameters ..... 185
Group PP: Restoring the factory setting and blocking the change of parameters ..... 185
Group CO: Torque control and parameter limitation ..... 186
Group C5: Control optimization parameters ..... 187
Group C6: FI curve setting (FI is FIV or FIC) ..... 189
Group C9: Special function PID ..... 191
Group CC: Correction of $\mathrm{FI} / \mathrm{FO}$ values ..... 191
Group DO: Monitoring parameters ..... 193
Chapter 6 Fault checking and elimination ..... 195
6.1 Fault display and elimination ..... 195
6.2 Common faults and their solution ..... 200
Chapter 7 Maintenance ..... 202
7.1 Inspection ..... 202
7.2 Periodic maintenance ..... 203
7.3 Replacement of wearing parts ..... 203
7.4 V 800 Inverter warranty ..... 204
7.4.1 Inverter tests ..... 204
7.4.2 Warranty period ..... 204
7.4.3 Warranty terms ..... 204
7.4.4 The warranty does not apply to defects caused ..... 204
Declaration of Conformity ..... 205
Annex A Communication protocol ..... 206
Directory of MODBUS communication parameters ..... 211

## Chapter 1:

Safety instructions
Follow this instruction manual before installation, operation, maintenance or inspection. In this manual, safety precautions are marked with the text "WARNING" or "CAUTION".

Indicates a potentially hazardous situation which, if not avoided, may result in death or serious injury. Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury and damage to the equipment. This symbol is also used to warn of any security operations.

Using the actuator outside the specification range specified in the technical specifications may cause malfunction or damage to the actuator components. In exceptional cases, there is a risk of overheating, risk of ignition, damage to property and health, or loss of life.

* NOTE indicates a necessary operation to ensure proper operation of the device.

Warning signs are located on the front cover of the inverter. Follow these instructions when using the frequency inverter.

| - Only persons authorized to do so by law may install this device |
| :--- |
| - Follow the instructions in the manual before installation or operation. |
| - Disconnect all power cords before opening the front cover of the unit. |
| - Wait at least 10 minutes for the DC bus capacitors to discharge. |
| - Use proper grounding |
| - Never connect AC current to the output U VW terminals of the inverter |

## Safety conditions and protection for IEC applications

* Safety and protection must be ensured according to IEC 60364 and according to other local standards and regulations for electrical installation.

The machine equipment manufacturer shall ensure (applies to stationary equipment and their modules) that overcurrent protections on the network side interrupt the circuit within 5 seconds.

Static discharges on surfaces or interfaces that are not generally accessible (eg end pins or connector pins) can cause malfunctions. Therefore, it is necessary to observe ESD protective measures when working with drives or drive components.

## General safety principles

Frequency converters also use dangerous voltage for their operation and control rotating mechanical parts that can be dangerous. Protection of direct contact with PANV (for voltage up to 60V according to EN61800-5-1) is allowed only in connected spaces and in dry indoor spaces.
If these conditions are not met, other protective measures against electric shock must be taken, such as protective insulation. In principle, every frequency converter must be grounded. Since the leakage current of the inverter can be greater than $30 \mathrm{~mA} A C$, good grounding is necessary. The minimum size of the protective conductor must comply with the local safety conditions for equipment with high leakage currents. Applications with anti-interference filters can only be connected to power supplies with a neutral point.

Therefore, mount the frequency converter on a metal mounting plate. The mounting plate must not be painted and must have good electrical conductivity. It is strictly forbidden to disconnect from the network from the motor side if the inverter is running and the output current is not equal to zero.
They must also comply with the general and regional provisions on installation and safety for work on equipment with dangerous voltage (EN61800-5-1), as well as the relevant provisions regarding the correct use of tools and personal protective equipment (PPE).

In all operating modes of the control devices, the emergency stop device in accordance with EN 60204, IEC 204 (VDE 0113) must be functional. The failure of the emergency shutdown device must not lead to an uncontrolled or indefinite restart of the device. The use of radio devices (e.g. radios or mobile phones) in the immediate vicinity of the device may disrupt the function of the safety devices.

Operating and installation instructions for the V 800 series low-voltage frequency converter Version: v.5.4
Date of revision: October 2023

# MODEL: V800-4T0055 INPUT: 3PH 400 V $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ OUTPUT: 3PH $400 \mathrm{~V} \quad 13.0 \mathrm{~A}$ FREQ. RANGE: 0.1 až $3200 \mathrm{~Hz} \quad 5.5 \mathrm{~kW}$ <br>  <br> ( $\epsilon$ 

MODEL: V800-4T 0055


0055:5.5 kW
G: constant torque
$P$ : variable torque
2S: 1 PH AC 230 V
4T: 3 PH AC 400 V
6T: 3 PH AC 690 V

800 Inverter series 800

V : VECTOR

### 1.1 Technical parameters

| Parameter |  | VECTOR V 800 |
| :---: | :---: | :---: |
| $\begin{aligned} & \frac{\lambda}{0} \\ & \frac{0}{3} \\ & \vdots \\ & \frac{1}{\otimes} \\ & 0 \\ & 0 \end{aligned}$ | Supply voltage | $\begin{aligned} & \text { Input voltage range: } 1 \times 230 \mathrm{VAC} \pm 10 \% \\ & 3 \times 400 \mathrm{VAC} \pm 10 \%\end{aligned}$ |
|  | Power supply frequency | Power supply frequency range $47-63 \mathrm{~Hz}$ |
| n <br> .0 <br> 0.0 <br> 0 <br> 0 | Control mode | V/F scalar control <br> SFVC vector control with open circuit |
|  | Maximum frequency | SFVC vector control: $0-320 \mathrm{~Hz}$ <br> V/F scalar control: $0-3200 \mathrm{~Hz}$ |
|  | Carrier frequency | $1-16 \mathrm{kHz}$ <br> The carrier frequency is automatically adjusted based on the load characteristic. |
|  | Input frequency resolution | Digital setting 0.01 Hz <br> Analogy setting: maximum frequency $\times 0.025 \%$ |
|  | Initial torque | G type: $0.5 \mathrm{~Hz} / 150 \%$ (SFVC) <br> P type: $0.5 \mathrm{~Hz} / 100 \%$ |
|  | Speed range | 1:100 (SFVC) |
|  | Stability of speed | $\pm 0.5 \%$ (SFVC) |
|  | Torque control accuracy | $\pm 5 \%$ (SFVC) |
|  | Overload size | G type: 60s for 150\% rated current, 3s for $180 \%$ rated current <br> P type: 60s for $120 \%$ rated current, 3 s for $150 \%$ rated current |
|  | Increase of torque | Auto-boost or user manual boost 0.1\% to 30.0\% |
|  | V/F curve | Integrated with "C1" designation of class C1. Without marking C2. |
|  | V/F separation | Linear V/F curve <br> Multi-point V/F curve <br> N-voltage V/F curve (multiple of 1.2-voltage, 1.4- voltage, <br> 1.6 - voltage, 1.8 - voltage, modified) |
|  | Ramp modes | Two types: complete separation; half separation |
|  | Overload size | Linear curve <br> The ramp of S-curve type <br> Four sets of acceleration / deceleration in ranges of 0.0 - $6500.0 \mathrm{sec}$ |


| Parameter |  | VECTOR V 800 |
| :---: | :---: | :---: |
|  | DC braking | Braking frequency: 0.3 Hz to maximum frequency <br> Braking time: 0.0-100.0 s <br> Braking current: 0.0\% -100.0\% |
|  | Control in JOG mode (stepping) | JOG frequency range: $0.00-50.00 \mathrm{~Hz}$ JOG acceleration / deceleration time: 0.0-6500.0 s |
|  | Preset fixed speeds | Implemented up to 16 speeds using a simple PLC function or combinations of end states $X$. |
|  | Built-in PID controller | Facilitates a process-driven closed-loop control system. |
|  | Automatic voltage control AVR | When changing the supply voltage, it can automatically maintain a constant output voltage. |
|  | Overvoltage and overcurrent control | Current and voltage are automatically limited during operation to prevent frequent tripping due to overvoltage and over current. |
|  | Torque limitation and control | It can automatically limit the torque and prevent frequent over current during run. |
|  | STO safety function | "Emergency stop" system: In emergency situations, the inverter stops immediately after activating STO. |
|  | Speed limitation of current | It helps to prevent frequent errors due to over current of the AC motor |
|  | High power | AC motor control is realized by high power vector current control technology. |
|  | Time management | Time range: 0.0-6500.0 minutes |
|  | Communication protocol | RS485 MODBUS RTU |
|  | Channel of trigger commands | According to the panel, control terminals, the serial communication port can be switched in many ways. |
|  | Frequency source | 10 kinds of frequency, given by digital analog voltage, analog current, pulse, serial port, can be switched in many ways |
|  | Auxiliary source of frequency | 10 kinds of frequencies, micro adjustment can be easily realized, frequency synthesizer |


|  | Input terminals | 6 digital inputs <br> 2 analog inputs, one of which supports $0-10 \mathrm{~V}$ input and the other supports $0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ input. |
| :---: | :---: | :---: |
|  | Output terminals | 1 digital output, <br> 1 relay output, <br> 1 analog output terminal, with $0-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ output |
|  | PTC | Input for PTC protection of the electric motor |
|  | LED display | Displays the parameters |
|  | Key lock and function selection | It can block the buttons partially or completely and define the function range of some buttons to prevent incorrect function. |
|  | Protective mode | Motor short circuit detection at power on, output phase loss protection, over current protection, over voltage protection, under voltage protection, over temperature protection and overload protection. |
|  | EMC (Compatibility) | IEC 61000-4-6; IEC 61000-4-4;IEC 61000-4-11; IEC 61000-4-5 |
|  | Standards | EN/IEC 61800-3: 2017; C1, which is suitable for the 1st environment; EN/IEC 61800-3: 2017; C2, which is suitable for the 1st environment; |
|  | Installation in the environment | Indoors, avoid direct sunlight, salt, dust, corrosive or flammable gas, smoke, steam. Resistance to chemical contamination class 3C3 EN/IEC 60721-3-3. Resistance to dust contamination 3S3EN/IEC 60721-3-3. |
|  | Height above sea level | Below 1000 meters above sea level (reduce the load level when using above 1000 meters above sea level) |
|  | Ambient temperature | $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$ (reduce the power level if the ambient temperature is between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ ) |
|  | Humidity | Less than $95 \%$ relative humidity, non-condensing IEC 60068-2-3 |
|  | Vibrations | Less than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$ IEC 60068-2-6 |
|  | Storage temperature | $-20^{\circ} \mathrm{C}$ až $+60^{\circ} \mathrm{C}$ |

### 1.2 Instructions for selecting an inverter V800

| Type of model | Size | Rated output power (kW) | Maximum input current (A) | Rated output current (A) | Engine power (kW) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1PH / 3PH AC $230 \mathrm{~V} \pm 15 \%$ |  |  |  |  |  |
| V 800-2S0004 | A2S | 0.4 | 5.4 | 2.4 | 0.4 |
| V 800-2S0007 | A2S | 0.75 | 7.2 | 4.5 | 0.75 |
| V 800-2S0015 | A2S | 1.5 | 10 | 7.0 | 1.5 |
| V 800-2S0022 | B2S | 2.2 | 16 | 10.0 | 2.2 |
| V 800-2S0030 | B2S | 3.0 | 23 | 16.0 | 3.0 |
| 3PH / 3PH AC $400 \mathrm{~V} \pm 15 \%$ |  |  |  |  |  |
| V 800-4T0007 | A4T | 0.75 | 3.8 | 2.5 | 0.75 |
| V800-4T0011 | A4T | 1.1 | 4.5 | 3.0 | 1.1 |
| V 800-4T0015 | A4T | 1.5 | 5 | 3.7 | 1.5 |
| V800-4T0022 | A4T | 2.2 | 5.8 | 5.0 | 2.2 |
| V 800-4T0030 | B4T | 3.0 | 8.0 | 7.5 | 3.0 |
| V 800-4T0040 | B4T | 4.0 | 10.0 | 9.0 | 4.0 |
| V 800-4T0055 | B4T | 5.5 | 15.0 | 13.0 | 5.5 |
| V 800-4T0075 | B4T | 7.5 | 19.0 | 17.5 | 7.5 |
| V 800-4T0110 | C | 11 | 26.0 | 25.0 | 11 |
| V 800-4T0150 | C | 15 | 35.0 | 32.0 | 15 |
| V 800-4T0185 | D | 18.5 | 38.0 | 37.0 | 18.5 |
| V 800-4T0220 | D | 22 | 46.0 | 45.0 | 22 |
| V 800-4T0300 | D | 30 | 62.0 | 60.0 | 30 |
| V 800-4T0370 | E | 37 | 76.0 | 75.0 | 37 |
| V 800-4T0450 | E | 45 | 92.0 | 90.0 | 45 |
| V 800-4T0550 | F | 55 | 112.0 | 110.0 | 55 |
| V 800-4T0750 | F | 75 | 155.0 | 150.0 | 75 |
| V 800-4T0900 | F | 90 | 180.0 | 176.0 | 90 |
| V 800-4T1100 | F | 110 | 215.0 | 210.0 | 110 |
| V 800-4T1320 | F | 132 | 260.0 | 253.0 | 132 |
| V 800-4T1600 | F | 160 | 310.0 | 300.0 | 160 |
| V 800-4T2000 | G | 200 | 390.0 | 380.0 | 200 |

### 1.3 Selected performance parameters of the V800

| Type of converter used | Input voltage $50 / 60 \mathrm{~Hz}$ | Engine power (kW) | Power wire cross-section (mm2) *recommended | Recommended fuses IEC 60269 gG <br> (A) |
| :---: | :---: | :---: | :---: | :---: |
| V 800-2S0004 | 1 phase | 0.4 | 1.5 | 10 |
| V 800-2S0007 |  | 0.75 | 1.5 | 16 |
| V 800-2S0015 | 230 V | 1.5 | 2.5 | 25 |
| V 800-2S0022 |  | 2.2 | 4.0 | 32 |
| V 800-2S0030 |  | 3.0 | 4.0 | 40 |
| V 800-4T0004 | 3 phases | 0.4 | 1.5 | 6 |
| V 800-4T0007 |  | 0.75 | 1.5 | 6 |
| V800-4T0011 |  | 1.1 | 1.5 | 10 |
| V 800-4T0015 |  | 1.5 | 1.5 | 10 |
| V 800-4T0022 |  | 2.2 | 1.5 | 10 |
| V 800-4T0030 |  | 3.0 | 2.5 | 16 |
| V 800-4T0040 |  | 4.0 | 2.5 | 16 |
| V 800-4T0055 |  | 5.5 | 2.5 | 20 |
| V 800-4T0075 |  | 7.5 | 4 | 32 |
| V 800-4T0110 |  | 11 | 4 | 32 |
| V 800-4T0150 |  | 15 | 6 | 40 |
| V 800-4T0185 | 400 V | 18.5 | 10 | 50 |
| V 800-4T0220 |  | 22 | 10 | 50 |
| V 800-4T0300 |  | 30 | 16 | 63 |
| V 800-4T0370 |  | 37 | 25 | 100 |
| V 800-4T0450 |  | 45 | 25 | 100 |
| V 800-4T0550 |  | 55 | 35 | 125 |
| V 800-4T0750 |  | 75 | 50 | 160 |
| V 800-4T0900 |  | 90 | 70 | 225 |
| V 800-4T1100 |  | 110 | 95 | 250 |
| V 800-4T1320 |  | 132 | 120 | 315 |
| V 800-4T1600 |  | 160 | 120 | 350 |
| V 800-4T2000 |  | 200 | 185 | 500 |

1.4 Table of suitable braking resistors

| Type of converter used |  | Braking resistors |  | Motor power (kW) |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Power |  |  |
| V 800-2S0004 | Built-in BU | 0,08 | 200 | 0.40 |
| V 800-2S0007 | Built-in BU | 0,08 | 150 | 0.75 |
| V 800-2S0015 | Built-in BU | 0,10 | 100 | 1.5 |
| V 800-2S0022 | Built-in BU | 0,10 | 70 | 2.2 |
| V 800-2S0030 | Built-in BU | 0,25 | 65 | 3.0 |
| V 800-4T0004 | Built-in BU | 0,15 | 300 | 0.4 |
| V 800-4T0007 | Built-in BU | 0,15 | 300 | 0.75 |
| V800-4T0011 | Built-in BU | 0,15 | 220 | 1.1 |
| V 800-4T0015 | Built-in BU | 0,15 | 220 | 1.5 |
| V 800-4T0022 | Built-in BU | 0,25 | 200 | 2.2 |
| V 800-4T0030 | Built-in BU | 0,30 | 130 | 3.0 |
| V 800-4T0040 | Built-in BU | 0,30 | 130 | 4.0 |
| V 800-4T0055 | Built-in BU | 0,40 | 90 | 5.5 |
| V 800-4T0075 | Built-in BU | 0,50 | 65 | 7.5 |
| V 800-4T0110 | Built-in BU | 0,50 | 65 | 11 |
| V 800-4T0150 | Built-in BU | 0,80 | 43 | 15 |
| V 800-4T0185 | Built-in BU | 1,00 | 32 | 18.5 |
| V 800-4T0220 | Built-in BU | 1,30 | 25 | 22 |
| V 800-4T0300 | Built-in BU | 1,50 | 22 | 30 |
| V 800-4T0370 | Built-in BU | 2,50 | 16 | 37 |
| V 800-4T0450 | Built-in BU | 3.70 | 12.6 | 45 |
| V 800-4T0550 | External BU | 4.50 | 9.4 | 55 |
| V 800-4T0750 | External BU | 5.50 | 9.4 | 75 |
| V 800-4T0900 | External BU | 7.50 | 6.3 | 90 |
| V 800-4T1100 | External BU | $4.5 \times 2$ | $9.4 \times 2$ | 110 |
| V 800-4T1320 | External BU | $5.5 \times 2$ | $9.4 \times 2$ | 132 |
| V 800-4T1600 | External BU | $6.5 \times 2$ | $6.3 \times 2$ | 160 |
| V 800-4T2000 | External BU | $6.5 \times 3$ | $6.3 \times 3$ | 200 |

### 1.5 Dimensional specifications of frame sizes A2S and A4T



| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\varnothing$ d |
| V 800-2S0004 to 2S0015 | 72 | 142 | - | 152 | 62.7 | 132.7 | 5 |
| V 800-4T0004 to 4T0022 | 72 | 142 | - | 152 | 62.7 | 132.7 | 5 |



### 1.6 Dimensional specifications of frame sizes B2S and B4T



| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H 1 | D | A | B | $\varnothing \mathrm{d}$ |
| V 800-2S0022; 2S0030 | 100 | 183 | - | 143 | 90 | 173 | 5 |
| V 800-4T0030; <br> 4T0040;4T0055;4T0075 | 100 | 183 | - | 143 | 90 | 173 | 5 |


1.7 Dimensional specifications of frame sizes C 11 kW and 15 kW


| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\varnothing$ d |
| V 800-4T0110 <br> V 800-4T0150 | 130 | 260 | - | 184 | 120 | 250 | 5 |


1.8 Dimensional specifications of frame sizes D from 18.5 kW to 30 kW


| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\varnothing \mathrm{d}$ |
| V 800-4T0185 | 195 | 280 | - | 179 | 182.5 | 266 | 7 |
| V 800-4T0220 |  |  |  |  |  |  |  |
| V 800-4T0300 |  |  |  |  |  |  |  |


1.9 Dimensional specifications of frame sizes E 37 kW and 45 kW


| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\varnothing \mathrm{d}$ |
| V 800-4T0370 <br> V 800-4T0450 | 245 | 390 | 425 | 193 | 180 | 410 | 7 |



### 1.10 Dimensional specifications of frame sizes F from 55 kW to 160 kW



| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\varnothing$ d |  |
| V 800-4T0550;4T0750 | 300 | 500 | 540 | 252 | 200 | 522 | 9 |  |
| V 800-4T0900 | 338 | 546 | 576 | 256.5 | 270 | 560 | 9 |  |
| V 800-4T1100; 4T1320 | 338 | 550 | 580 | 300 | 270 | 564 | 9 |  |
| V 800-4T1600 | 400 | 675 | 715 | 310 | 320 | 695 | 11 |  |

### 1.11 Dimensional specifications of frame sizes G 200 kW



| Model | External dimensions (mm) |  |  |  | Installation dimensions (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | H | H1 | D | A | B | $\emptyset \mathrm{d}$ |
| V 800-4T2000 | 300 | 1380 | 1445 | 499 | 220 | 1135 | 13 |

### 1.12 Openings for mounting the external control panel

For models .. 0004 to 0300 (i.e. $0.4 \mathrm{~kW}-30 \mathrm{~kW}$ ) $.68,5 \times 39 \mathrm{~mm}$
For models.. 0370 and bigger (i.e. 37 kW and more) $70 \times 119 \mathrm{~mm}$


Opening for the keyboard (single-line display)


Opening for the keyboard (two-line display)

## Chapter 2 Installation and wiring

### 2.1 Environment and installation requirements

3 The installation environment affects the life of the inverter and has a direct effect on the normal function, failure to comply with the environmental specifications could lead to a fault in the inverter.
4 For the VECTOR V 800 series inverter, use the vertical installation to ensure the best possible air flow and heat dissipation effect.
5 Ensure that you can meet the inverter's installation environment:
6 (1) $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ambient temperature
(2) Ambient humidity $0 \sim 95 \%$, no condensation
(3) Avoid direct sunlight
(4) The surrounding environment does not contain corrosive gas and liquid
(5) Dust-free environments, flying fibres, cotton and metallic particles
(6) Without radioactive material and fuel
(7) Distance from an electromagnetic interference source (such as an electric welding machine, a large powering machine)
(8) Install on a flat, vibration-free surface, if you cannot avoid vibrations, add antivibration pad to reduce vibration
(9) Install the inverter in a well-ventilated place, easily accessible for maintenance and for solid non-flammable material outside the heater (e.g. braking resistor, etc.) (10) Installing the inverter requires plenty of space, especially in case more inverter installations, be careful with the location of the frequency inverter and place the cooling fans so that the ambient temperature is below $45^{\circ} \mathrm{C}$.
8 (11) The rated output of the inverter applies to installations with an altitude of less than 1000 m . At an altitude above 1000 m the inverter performance decreases.

### 2.2 Connection of inverter V 800 to power grid

### 2.2.1 The descriptions of peripheral devices

(1) AC power supply

Use within the permissible power supply specifications of the inverter.
(2) Breaker

If the power supply voltage is low or the input terminal is short, the circuit breaker provides the option of disconnecting the inverter from the power supply during inspection, maintenance, or if the inverter does not work. Maximum disconnection times are according to STN 33 2000-4-41. To protect the input of the inverter, fuses with gR and gG characteristics
(semiconductor fuse) must be used. Fast fuses type: gG protects only short circuit, gR protect short circuit + overload.
(3) Electromagnetic contactor: (MC)

In order to ensure safety, the contactor allows the inverter to power on and off.
4) AC input reactor

Suppresses the higher harmonics to protect the inverter.
(5) Braking resistor

When braking the motor, the resistance can prevent the high voltage of the DC bus of the inverter and improve the braking capability of the internal braking unit.

### 2.2.2 Measures for main circuit wiring

(1) When connecting circuits, follow the requirements of electrical brands and standards.
(2) Using the supply voltage at the output terminals ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) of the inverter leads to its destruction.
(3) Use the insulated conductors and insulated protective tubes (if possible) to connect the power supply and ground them.
(4) The inverter and the welding unit, high performance motor and the like cannot use a common grounding cable.
(5) Earthing terminal E and earthing impedance are less than 10 ohms.
(6) Use the shortest earthing cable.
(7) Be careful not to create earthing loops when grounding multiple inverters.
8) Power cables and control cables must be separated, secure the distance of the power cables from parallel control cables to more than 10 cm , or when the cables and control cables are crossed. Parallel storage of power and control cables will cause interference.
(9) Normally, the distance between the inverters and the motors is less than 30 m , the current generated by the parasitic capacitance can cause overshoot maximum current, incorrect operation, inverter failure and equipment failure. The maximum distance is 100 meters. If the distance is greater, put the reactor on the output side and lower the carrier frequency.
(10) Do not install an absorption capacitor or other capacitance resistive absorption devices!
(11) Make sure the terminals are fully tightened, the cables are well connected to the terminals, are not loose, do not cause sparks and short circuit. To minimize interference in 1st environment, it is recommended (if not installed in a particular inverter type)

- Install the EMC category C1 filter on the input side of the inverter;
- Protect the interference of other devices by means of a choke or an RFI filter.
(12) Changing the direction of rotation of the electric motor shaft: the direction of rotation can be changed by changing the two output lines at the output of the frequency converter or at the terminal block of the electric motor.



### 2.3.1 Inverter connection and cabling conditions

(1) Place the control signal cables and the mains and other power lines apart.
(2) Use a twisted pair or two-wire shielded conduit with a cross section of 0.5 to $2 \mathrm{~mm}^{2}$ to avoid interference.
(3) Ensure that the terminals used are suitable for maximum voltage and current load.
(4) Use the correct earthing terminal $E$, the earthing resistance must be less than 10 ohms, according to STN EN 62305-3.
Use the prescribed cross section of the grounding wire. Protective wire cross sections must be calculated or determined according to the table (all according to STN 33 2000-5-54). The grounding point should be as close as possible to the inverter and the wire length should be as short as possible. In TN networks, the following requirements must be met:
(4.1) The earthing resistance of the source node shall not be greater than $5 \Omega$.

Under difficult soil conditions, a maximum of $15 \Omega$ is allowed.
(4.2) The total earthing resistance of PEN wires (including wires from the transformer and the ground point) for 230 V AC networks must not exceed $2 \Omega$.
(4.3) The wire PEN in the TN-C network or the PE wire in the TN-S network must be grounded by a separate earthing device or connected to an existing system. The individual earthing of the PEN and PE wires should have a ground resistance of no more than $15 \Omega$. At the end of the line and branch lines at the neutral point, the earthing resistance should be maximum $5 \Omega$.
(5) Fulfil the requirements for the connection of each terminal, the right selection of accessories such as potentiometers, voltmeters, power supplies, cables, terminals, etc.
(6) Power can be turned on after the connection is complete and checking that everything is properly connected.
(7) The total length of the line should not exceed 100 m . Particularly in the remote connection, the current limiting function may be reduced, or the device or equipment connected to the inverter output side or the charging current may be malfunction due to a long electrical installation. Therefore, note the total lead length. It is recommended to use for outputs from inverter shielded cables, such as NYCY $3 x$ cross section, NYCWY $3 x$ cross section or ÖLFLEX ${ }^{\circledR}$ 4 G , to minimize interference.
2.3.2 Basic wiring diagram of VECTOR V 800-2S and 4T. Equipment type R NPN Internal source


NPN External source


## Control terminal block for equipment type $\mathbf{R}$ models

- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 4 20 mA input
- Switch J1 determines whether the FOV is a voltage or current $4-20 \mathrm{~mA}$ output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line - CN2 is a 10PIN port for connecting a display or extension cable
Type: NPN
- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 4 20 mA input
- Switch J1 determines whether the FOV is a voltage or current $4-20 \mathrm{~mA}$ output
- Switch J3 determines whether the digital input source is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line - CN2 is a 10PIN port for connecting a display or extension cable
Type: NPN


Chapter 2 Installation and wiring

## Practical connection of the mentioned models



Type: a - 3 -phase supply 400 V AC ( $0.4-2.2 \mathrm{~kW}$ )


An example of connecting inverter control via RS485. For end FM, switch J4 to ON.


### 2.3.3. Basic wiring diagram VECTOR V 800 - 2S... equipment type S

NPN Internal source


NPN Externý zdroj


## Control terminal block for equipment type S models

- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 420 mA input
- Switch J1 determines whether the FOV is a voltage or current $4-20 \mathrm{~mA}$ output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line - CN2 is a 10PIN port for connecting a display or extension cable
- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 420 mA input
- Switch J1 determines whether the FOV is a voltage or current 4-20 mA output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line
- CN2 is a 10PIN port for connecting a display or extension cable

Type: NPN


Chapter 2 Installation and wiring
Practical connection of frequency converters V800-2S0022 and V800-2S0030...Type S


## WARNING! Never connect the -DC intermediate circuit terminal to ground!

An example of connecting inverter control via RS485. For end FM, switch J4 to ON.


### 2.3.4. Basic wiring diagram VECTOR V 800 - 4T... equipment type T NPN Internal source



NPN Externý zdroj


## Control terminal block for equipment type T models

- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 4 20 mA input
- Switch J1 determines whether the FOV is a voltage or current 4-20 mA output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line - CN2 is a 10PIN port for connecting a display or extension cable
Type: NPN
- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current 420 mA input
- Switch J1 determines whether the FOV is a voltage or current $4-20 \mathrm{~mA}$ output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line
- CN2 is a 10PIN port for connecting a display or extension cable Type: NPN


Chapter 2 Installation and wiring

## Connection of power part V800-4T0030 to 4T0150



Pover supply cable


The R/S/T terminals are used to connect the power cable. The terminal $\left(\frac{1}{5}\right.$ is common both for the supply and for the powered motor.

Terminals U/V/W are used to connect the electric motor, they are output terminals.

Terminals of the DC intermediate circuit +/B1 and B2 are used to connect the braking resistor (resistor).

## WARNING! Never connect the - DC intermediate circuit terminal to ground!

An example of connecting inverter control via RS485. For end FM, switch J4 to ON.


### 2.3.5. Basic wiring diagram VECTOR V 800 - 4T... equipment type U <br> NPN Internal source




Chapter 2 Installation and wiring

## Control terminal block for equipment type U models



- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current $4-20 \mathrm{~mA}$ input
- Switch J1 determines whether the FOV is a voltage or current 4-20 mA output
- Switch J3 determines whether the source of digital inputs is internal or external
- Switch J4 determines the ON/OFF resistance of the communication line
- CN2 is a 10PIN port for connecting a display or extension cable

An example of connecting inverter control via RS485. For end FM, switch J3 ON.


### 2.3.6. Basic wiring diagram VECTOR V 800 - 4T... equipment type V <br> NPN Internal source




## Control terminal block for equipment type V models



- Switch J2 determines whether the FIC is a voltage $0-10 \mathrm{~V}$ or a current $4-20 \mathrm{~mA}$ input
- Switch J1 determines whether the FOV is a voltage or current 4-20 mA output
- Switch J4 determines whether the source of digital inputs is internal or external
- Switch J3 determines the ON/OFF resistance of the communication line
- CN2 is a 10 PIN port for connecting the display or extension cable to the display


### 2.3.7 Power terminal blocks and control terminal blocks V 800 and their description

The arrangement of the terminals of the $\mathrm{V} \mathbf{8 0 0}$ power terminal block is as follows:

| Terminal designation | Description |
| :---: | :---: |
| R/L1, S/L2, T/L3 | Supply voltage (input terminals) |
| U/T1, U/T2, U/T3 | Inverter output terminals for connecting a three-phase electric <br> motor. |
| +/B1, - | DC circuit output. WARNING!!! <br> Only the brake unit can be connected here! |
| +/B1, B2 | Braking resistor connection |
| +, PR | Earthing (PE) |

## Description of switches on the control panel

| Switch name | Description of the switch |
| :---: | :---: |
| J2 | FIC analogue input: voltage ( $0-10 \mathrm{~V}$ ) input switch to V FIC analogue input: current ( $0-20 \mathrm{~mA}$ ) input switch to I |
| J1 | FOC analogue output: voltage ( $0-10 \mathrm{~V}$ ) output switch to V FOC analogue output: current ( $0-20 \mathrm{~mA}$ ) output switch to I |
| J3 (0,4-30 kW) | Switch J3 determines whether the power source for the digital terminals is internal or external (Working range from +5 V to 27 V ). |
| J4 (0,4-30 kW) | Switch J3 determines the value of the terminal resistance of the communication line. Switched ON or switched OFF. |
| J3 (37-200 kW) | Switch J3 determines the value of the terminal resistance of the communication line. Switched ON or switched OFF. |
| J4 (37-200 kW) | Switch J4 determines whether the power source for the digital terminals is internal or external (Working range from +5 V to +27 V ). |
| CN2 | 10 PIN port for connecting the display or extension cable to the display |

Chapter 2 Installation and wiring

| Terminal name | Description of the function | Notes |
| :---: | :---: | :---: |
| FWD | Command RUN FORWARD / STOP command | Multi-function input terminals S1 to S4, FWD, REV according to reference number or specific settings and GND. Internal power supply 12 V DC. External power supply 5V to 27 V DC. Input impedance $3.3 \mathrm{k} \Omega$. |
| REV | Command RUN REVERSE / STOP command |  |
| S1 | Multifunction input terminal |  |
| S2 | Multifunction input terminal |  |
| S3 | High speed pulse input terminal |  |
| S4 | Multifunction input terminal |  |
| FOV | Analogue output terminal | 0-10 V / 0-20 mA |
| 10V | Source +10 V for frequency control | Potentiometer $10 \mathrm{k} \Omega$ |
| FIV | Input analogue voltage terminal | 0-10 V (Impedance: $20 \mathrm{k} \Omega$ ) |
| FIC | Input analogue current terminal | $\begin{aligned} & 0-20 \mathrm{~mA} / 0-10 \mathrm{~V} \\ & \text { (Impedance } 250 \Omega \text { for current } \\ & \text { input / } 10 \mathrm{k} \Omega \text { for voltage } \end{aligned}$ |
| GND | Zero potential for digital inputs |  |
| MCM | Zero potential for OC |  |
| MO1 | Multifunction optical output | Output load capacity max. 48V DC/50mA |
| RS+ | RS 485 plus | RS485 communication |
| RS- | RS 485 minus |  |
| +24V | Source +24 V (max. 150 mA ) | Only models from 37 kW |
| RA | Relay output contacts (NO) | Load capacity of contacts: AC 250V / 3A; DC 30V / 1 A. |
| RB | Relay output contacts (NC) | Load capacity of contacts: AC 250V / 3A; DC 30V / 1 A. |
| RC | Relay output contacts RA, RB common terminal | Load capacity of contacts: AC 250V / 3A; DC 30V / 1 A. |

## Chapter 3: Operation

### 3.1 Description of the single-line digital panel

### 3.1.1 Image of the panel for models 0.4 kW to 30 kW



### 3.1.2 Description of button functions

| Key | Name | Description |
| :---: | :---: | :---: |
| PRC | Program key | Enter or returns from the first level menu |
| $\frac{E N E R}{i=S E 1}$ | ENTER/RESET | Step by step through the menu and confirm the parameters, or return back |
|  | Increase value | Gradually increases data or functional codes. |
|  | Decrease value | Gradually decreases data or functional codes. |
| $1$ | Rotary knob/Button | Turn the knob to control the frequency / Press the knob to switch the display |

Briefly "push and release" the rotary knob and the display will gradually show other quantities after each push:

- operating frequency in Hz
- set frequency Hz
- the value of the current DC voltage
- output current A
- output power
* It depends on the setting of bits in P7.03


| Key | Name | Description |
| :---: | :---: | :---: |
| $($ Shift left | In parameter setting mode, press this button to <br> select the bit you want to edit. In other modes, <br> it displays the parameters by scrolling to the <br> right |  |
| STOP | START/STOP | Start and Stop of the inverter in keypad control <br> mode. |

### 3.1.3 Description of the light indicator

| The name of the light indicator | Description of the light indicator |
| :---: | :---: |
| Hz | Frequency |
| A | Vorrent |
| V | Off (light off): forward. <br> On (light on): reverse operation. |
| FWD/REV |  |

### 3.2 Description of the two-line digital panel

3.2.1 Panel image for $\mathbf{3 7} \mathbf{k W}$ to $\mathbf{2 0 0} \mathbf{k W}$ models


| Key | Name | Description |
| :---: | :---: | :---: |
| 氧近 | Program key | Enter or returns from the first level menu |
| $\checkmark$ <br> ENTER | ENTER/RESET | Postupné prechádzanie cez menu a potvrdzovanie parametrov, alebo návrat spät́. |
| UP | Increase value | Gradually increases data or functional codes. |
|  | Decrease value | Gradually decreases data or functional codes. |


| Key | Name | Description |
| :---: | :---: | :---: |
| Shift left | In parameter setting mode, press this button <br> to select the bit you want to edit. In other <br> modes, it displays the parameters by <br> scrolling to the right |  |
| SHIFT |  |  |

Accessories: It is possible to purchase an extension cable and an external display for the inverter. The cable is custom-made according to the request in a length of 2 to 30 m .


Extension cable and external display suitable for V800 power series inverters from 0.4 kW to 30 kW Type: DP6E2


Extension cable and external display suitable for V800 power series inverters from 37 kW to 200 kW Type: DP6G3

### 3.3 Operation

### 3.3.1 Parameter setting

Three-level menu:
1.The function code group (first menu);
2. Function code (second menu);
3. Function code set value (third menu).

Explanation: the three-level menu operation can press PRG or ENTTER to return to the secondary menu. The difference between the two is: press ENTER to set parameters in control panel, and then return to the secondary menu, and automatically move to the next function code; Press PRG directly to return to the secondary menu, don't store parameters, and keep staying in the current function code. Example: change the function code P1.03 from 00.00 Hz change the sample set to 50.00 Hz .


Flow chart of parameter setting.

In three-level state, if the parameter is not flashing, said the function code cannot be modified, possible reasons are:

1) The function code parameters cannot be modified. Such as the actual testing parameters, operation records, etc.;
2) The function code in the running state cannot be modified.

### 3.3.2 Fault RESET

After the failure of the inverter, the inverter will be prompted to related fault information. User can press STOP key on the keyboard or terminal function to conduct the fault reset (P5), after fault reset the inverter is in the standby mode. If the inverter is in fault state, the user does not carry on the fault reset, the inverter is in the running to protect state and can't run.

### 3.4 First start

### 3.4.1 First start for V/F drive (suitable for fans, pumps, etc.)

A simplified example:

After you have correctly connected the V800 frequency converter according to chapter 1 and 2 and you have correctly connected the appropriate electric motor:
Set V800 parameters
P0.00=2
P0.01=0
P0.08= select the start-up time according to the load
P0.09= select the deceleration time according to the load
P1.10= 0 if you are stopping small inertias
P1.10= 1 if you are stopping large inertias, e.g. large fan
P2.01= power of the driven electric motor according to its nameplate
P2.02= nominal supply voltage of the electric motor according to its nameplate
P2.03= rated current of the electric motor according to its nameplate
P2.04= nominal frequency of the electric motor according to its nameplate
P2.05= rated speed of the electric motor according to its nameplate
P4.01= increase in torque (use for harder start-up (preferably $0.0=$ automatic)

### 3.4.2 First start for SFVC drive (suitable for crushers, conveyors, etc.)

In the SFVC vector control process, it is necessary to tune the inverter to the driven electric motor!

A simplified example:

After you have correctly connected the V800 frequency converter according to chapter 1 and 2 and you have correctly connected the appropriate electric motor:
Set V800 parameters
P0.00=1
P0.01=1
P0.08= select the start-up time according to the load
P0.09= select the deceleration time according to the load
P2.01= power of the driven electric motor according to its nameplate
P2.02= nominal supply voltage of the electric motor according to its nameplate
P2.03= rated current of the electric motor according to its nameplate
P2.04= nominal frequency of the electric motor according to its nameplate
P2.05= rated speed of the electric motor according to its nameplate

Then set automatic tuning (if you have the drive decoupled - no load), enter dynamic tuning P2.37=2 and press START. "StudY" lights up on the display and the drive starts. After the end of the tuning process (autotuning), the set frequency appears on the display, e.g.: 50.00 If you already have the drive connected to the load, the direction of rotation of the electric motor rotor is correctly set, but for certain reasons it is safer not to rotate the drive, enter static tuning:
P2.37=1 and press START. "StudY" lights up on the display, but the drive does not start. The electric motor shaft will only "twitch" slightly and there may be an intermittent "buzz" from the motor (this is a natural tuning effect). After the end of the tuning process (autotuning), the set frequency appears on the display, e.g.: 50.00.

### 3.5 Inverter operation

### 3.5.1 Power-on initialization

When the inverter is switched on, the system first initializes, the LED display shows "2000". When the initialization is complete, the inverter is in the standby mode.

### 3.5.2 Stand-by mode of inverter

In the stopping or running status can the display shows a various of state parameters. By Function Code P7.03 (operating parameters), P7.05 (stop parameter), various definitions can refer to P7.03 and P7.05 function code.

### 3.5.3 Inverter operation

In the operating state, it is possible to choose whether a total of sixteen operating parameters should be displayed: operating frequency, set frequency, bus voltage, output voltage, output current, operating speed, output power, output torque, PID setting, analog input PID FIV voltage, FIC analog input voltage, number of multi-turn segments, torque set point; whether to display the function code is decided by the selection of bit P7.03 and P7.04, press the button to switch the display order of the selected parameters, press the left button to switch the display of the selected parameters.

### 3.5.4 Failure reports

The V800 series offers a variety of fault information. Please read Chapter 5 on V800 inverter errors and troubleshooting them.

### 3.5.5 Setting of PTC and TK thermal protection of the motor

Connect the PTC thermistor and the TK electric motor according to the picture:


For example, the parameter setting is as follows: P5.02 = 33

### 3.6 Quick Start-up



## Example 1: first start in V/F control mode



| $P 0.00=2$ |
| :--- |
| $P 0.01=0$ |
| $P 0.08=120 \mathrm{sec}$ |
| $P 0.09=120 \mathrm{sec}$ |
| $P 1.10=1$ |
| $P 2.01=7,5 \mathrm{~kW}$ |
| $P 2.02=400 \mathrm{~V}$ |
| $\mathrm{P} 2.03=13,5 \mathrm{~A}$ |
| $\mathrm{P} 2.04=50 \mathrm{~Hz}$ |
| $\mathrm{P} 2.05=2930 \mathrm{rpm}$ |
| $\mathrm{P} 4.01=5,0 \%$ |
| $\mathrm{P} 9.00=1$ |
| $\mathrm{P} 9.01=10$ |
| $\mathrm{P} 9.03=50$ |
| $\mathrm{P} 9.12=11$ |
| $\mathrm{P} 9.13=1$ |
| START |
|  |

## Example 2: first boot in SFVC control mode

| $\mathrm{P} 0.00=1$ |
| :--- |
| $\mathrm{P} 0.01=1$ |
| $\mathrm{P} 0.08=30 \mathrm{sec}$ |
| $\mathrm{P} 0.09=30 \mathrm{sec}$ |
| $\mathrm{P} 2.01=7,5 \mathrm{~kW}$ |
| $\mathrm{P} 2.02=400 \mathrm{~V}$ |
| $\mathrm{P} 2.03=14,2 \mathrm{~A}$ |
| $\mathrm{P} 2.04=50 \mathrm{~Hz}$ |
| $\mathrm{P} 2.05=2910 \mathrm{rpm}$ |
| $\mathrm{P} 9.00=1$ |
| $\mathrm{P} 9.01=1.0$ |
| $\mathrm{P} 9.03=30$ |
| $\mathrm{P} 9.12=11$ |
| $\mathrm{P} 9.13=1$ |
| $\mathrm{P} 2.37=1$ (autotuning) |
| START |



## Chapter 4: The list of function parameters - shortened

If parameter PP. 00 is set to a nonzero number, parameter protection is enabled. To enter the menu, you must enter the correct user password. To disable password protection, enter your password and set PP. 00 to 0.
The parameter menu customized by the user is not password protected. Group P is the basic parameters of the functions, group $D$ is for monitoring of functional parameters.

The meaning of the symbols in the function code table is as follows:
, $\underset{\substack{*}}{ }$ The parameter can be changed when the inverter is in a stopped or running state.
„丸"The parameter cannot be changed when the inverter is in a running state.
„•"The parameter is actually a measured value and cannot be changed.
„*"This parameter is a factory parameter and can only be set by the manufacturer.

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| Group PO: Parameters of standard functions |  |  |  |  |
| P0.00 | G/P type* | 1: G type (constant torque load) 2: P type (variable torque, eg fan, compressor, pump, etc.) | *by the model | $\star$ |
| P0.01 | Selecting the control mode | 0: Voltage / frequency control (V/F) <br> 1: Flow vector control without sensor (SFVC) | 0 | $\star$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P0.02 | Select command channel | 0: Control via the operation panel <br> 1: Control via input terminals <br> 2: Control via PC | 0 | $\star$ |
| P0.03 | Frequency source | . $X$ (frequency source) <br> 0 : Main source of frequency <br> 1: $X$ and $Y$ operations (operating mode specified by dozens) <br> 2: Switch between $X$ and $Y$ <br> 3: Switch between $X$ and " $X$ and $Y$ " <br> 4: Switching between $Y$ and " $X$ and $Y$ " <br> X. ( $X$ and $Y$ operations) <br> $0: X+Y$ <br> 1: $X-Y$ <br> 2: Maximum $X$ and $Y$ <br> 3: Minimum $X$ and $Y$ | 00 | * |
| P0.04 | Select the main frequency source $X$ | 0 : Digital setting (P0.10 preset frequency, can change over UP / DOWN) <br> 1: Digital setting (PO.10 preset frequency, can change over UP / DOWN) <br> 2: FIV <br> 3: FIC <br> 4: By the rotary knob on the panel <br> 5: Impulse setting (S3), option <br> 6: Step speeds <br> 7: Simple PLC <br> 8: PID <br> 9: Communication interface | 0 | $\star$ |
| P0.05 | Select the auxiliary frequency source $Y$ | The same like P0.04 (selection of the main X source) 0-9 | 0 | $\star$ |
| P0.06 | Select the range of auxiliary frequency source $Y$ | 0 : Considering to the maximum frequency <br> 1: Considering to the maximum frequency of $X$ source | 0 | $\star$ |
| P0.07 | Extension of auxiliary frequency source $Y$ | 0\%-150\% | 100\% | * |


| P0.08 | Acceleration time 1 | 0.00s - 65000 s | by the model | * |
| :---: | :---: | :---: | :---: | :---: |
| P0.09 | Deceleration time 1 | 0.00s - 65000 s | by the model | * |
| P0.10 | Default frequency | 0.00 - maximum frequency (P0.12) | 50.00 Hz | $\stackrel{3}{*}$ |
| P0.11 | Direction of rotation | 0 : The same direction <br> 1: Reverse direction | 0 | $\pm$ |
| P0.12 | Maximum frequency | 50.00 Hz - 3200.00 Hz | 50.00 Hz | $\star$ |
| P0.13 | The upper limit of the frequency source | 0: P0. 12 <br> 1: FIV <br> 2: FIC <br> 3: Reserved <br> 4: Impulse setting <br> 5: Setting via the communication input | 0 | $\star$ |
| P0.14 | The upper limit of the frequency | Bottom frequency limit P0.16maximum frequency P0.12 | 50.00 Hz | $\pm$ |
| P0.15 | The upper limit of the frequency - shift | 0.00 Hz - maximum frequency P0.12 | 0.00 Hz | * |
| P0.16 | Bottom frequency limit | 0.00 Hz - Upper frequency limit P0.14 | 0.00 Hz | $\star$ |
| P0.17 | Carrier frequency | $1 \mathrm{kHz-16.0} \mathrm{kHz}$ | by the model | $*$ |
| P0.18 | The influence of temperature on the carrier frequencv | $\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$ | 1 | * |
| P0.19 | Time increment for acceleration / deceleration | $\begin{array}{\|l\|} \hline 0: 1 \mathrm{~s} \\ 1: 0.1 \mathrm{~s} \\ 2: 0.01 \mathrm{~s} \end{array}$ | 1 | $\star$ |
| P0.21 | Frequency shift of auxiliary frequency source for $X$ and $Y$ operation | 0.00 Hz - maximum frequency P0.12 | 0.00 Hz | $\pm$ |


| P0.22 | Frequency reference | $\begin{aligned} & \text { 1: } 0.1 \mathrm{~Hz} \\ & \text { 2: } 0.01 \mathrm{~Hz} \end{aligned}$ | 2 | $\star$ |
| :---: | :---: | :---: | :---: | :---: |
| P0.23 | Permanent digital frequency setting on power-on | 0 : No memory <br> 1: Memory | 0 | $\hat{*}$ |
| P0.24 | Acceleration/Decele ration time base frequency | $\begin{aligned} & \text { 0: Maximum frequency (P0.12) } \\ & \text { 1: Set frequency } \\ & \text { 2: } 100 \mathrm{~Hz} \end{aligned}$ | 0 | $\star$ |
| P0.25 | Base frequency for UP/DOWN modification during running | 0 : Running frequency <br> 1: Set frequency | 0 | $\star$ |
| P0.26 | Binding command source to frequency source | ..X: Binding operation panel command to frequency source <br> 0: No binding <br> 1: Frequency source by digital setting <br> 2: FIV <br> 3: FIC <br> 4: Reserved <br> 5: Pulse setting (S3) <br> 6: Multi-reference <br> 7: PLC <br> 8: PID <br> 9: Communication setting <br> .X.: Binding operation panel command to frequency source (0-9, the same as units) <br> X..: Binding operation panel command to frequency source (0-9, the same as units) | 000 | * |
| P0.27 | Communication expansion card type | 0: MODBUS communication card | 0 | $\lambda$ |
| P0.28 | Reserved |  |  |  |


| Group P1: Start / Stop Control |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| P1.00 | Start mode | 0: Direct start <br> 1: Re-start with speed tracking <br> 2: Pre-excitation (asynchronous motor) | 0 | * |
| P1.01 | Speed tracking mode | 0: From stop frequency <br> 1: From zero speed <br> 2: From the maximum frequency | 0 | $\star$ |
| P1.02 | Rotation tracking speed | 1-100 | 20 | \% |
| P1.03 | Starting frequency | $0.00 \mathrm{~Hz}-10.00 \mathrm{~Hz}$ | 0.00 Hz | 3 |
| P1.04 | Startup frequency holding time | 0.0s -100.0s | 0.0s | $\star$ |
| P1.05 | Startup DC braking current / Preexcited current | 0\%-100\% | 0\% | $\star$ |
| P1.06 | Startup DC braking time/Pre- excited time | 0.0s-100.0s | 0.0s | $\star$ |
| P1.07 | Acceleration/ Deceleration mode | 0: Linear acceleration / deceleration <br> 1: S-curve $A$ acceleration / deceleration <br> 2: S-curve B acceleration / deceleration | 0 | $\star$ |
| P1.08 | Time portion of the S-curve start phase | 0.0\% - (100.0\%-P1.09) | 30.0\% | $\star$ |
| P1.09 | Time portion of the S-curve end phase | 0.0\% - (100.0\%-P1.08) | 30.0\% | $\star$ |
| P1.10 | STOP mode | 0 : Deceleration to stop acc. to curve <br> 1: Coast to stop | 0 | N |
| P1.11 | Initial frequency of stop DC braking | 0.00 Hz - Maximum frequency | 0.00 Hz | * |
| P1.12 | Waiting time of stop DC braking | 0.0s-100.0s | 0.0s | E |


| P1.13 | Braking DC current at stop | 0\%-100\% | 0\% | H |
| :---: | :---: | :---: | :---: | :---: |
| P1.14 | DC braking time | 0.0s-100.0s | 0.0s | N |
| P1.15 | Braking rate | 0-100\% | 100 \% | 3 |

Group P2: Motor parameters

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P2.00 | Motor type selection | 0: Common asynchronous motor 1: Variable frequency asynchronous motor | 0 | * |
| P2.01 | Rated motor power | 0.1kW - 500.0kW | by the model | $\star$ |
| P2.02 | Rated motor voltage | 1V-2000V | by the model | $\star$ |
| P2.03 | Rated motor current | 0.01A - 655.35A | by the model | $\star$ |
| P2.04 | Rated motor frequency | 0.01 Hz - maximum frequency | by the model | $\star$ |
| P2.05 | Rated motor speed | $1 \mathrm{rpm}-65535 \mathrm{rpm}$ | by the model | $\star$ |
| P2.06 | Stator resistance (asynchronous motor) | 0.001 $\Omega-65.535 \Omega$ | by the model | * |
| P2.07 | Rotor resistance (asynchronous motor) | 0.001 $\Omega-65.535 \Omega$ | by the model | * |
| P2.08 | Leakage inductive reactance (asynchronous motor) | $0.01 \mathrm{mH}-655.35 \mathrm{mH}$ | by the model | $\star$ |
| P2.09 | Mutual induction (asynchronous motor) | $0.1 \mathrm{mH}-6553.5 \mathrm{mH}$ | by the model | * |


| P2.10 | Motor current without load (asynchronous motor) | 0.01A - P2.03 | by the model | $\star$ |
| :---: | :---: | :---: | :---: | :---: |
| P2.11- P2.36 Reserved |  |  |  |  |
| P2.37 | Auto-tuning selection | 0: Auto-tuning disabled <br> 1: Asynchronous motor - static autotuning <br> 2: Asynchronous motor - complete autotuning (dynamic parameters) | 0 | $\star$ |

## Group P3: Vector control parameters

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P3.00 | Linear constant 1 | 1-100 | 30 | 3 |
| P3.01 | Integration constant 1 | 0.01 s-10.00s | 0.50s | H |
| P3.02 | Frequency of switching 1 | 0.00 - P3.05 | 5.00 Hz | H |
| P3.03 | Linear constant 2 | 1-100 | 20 | N |
| P3.04 | Integration constant 2 | 0.01 s-10.00s | 1.00s | N |
| P3.05 | Frequency of switching 2 | P3.02- maximum output frequency | 10.00 Hz | N |
| P3.06 | Vector control slip gain | 0\% - 200\% | 100\% | N |
| P3.07 | Time constant of filter of the loop speed | 0.000s-0.100s | 0.000s | * |
| P3.08 | Over excitation gain | 0-200 | 64 | N |


| P3.09 | Torque upper limit source in speed control mode | ```0: P3.10 1: FIV 2: FIC 3: Reserved 4: Impulse setting 5: Communication setting via RS 485 6: MIN(FIV,FIC) 7: MAX(FIV,FIC)``` | 0 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: |
| P3.10 | Digital setting of torque upper limit in speed control mode | 0.0\%-200.0\% | 150.0\% | H |
| P3.11 | Reserved |  |  |  |
| P3.12 | Reserved |  |  |  |
| P3.13 | Adjusting the linear excitation constant | 0-60000 | 2000 | * |
| P3.14 | Adjusting the integration excitation constant | 0-60000 | 1300 | H |
| P3.15 | Adjusting the linear torque constant | 0-60000 | 2000 | * |
| P3.16 | Adjustment of the integration constant of torque | 0-60000 | 1300 | $\cdots$ |
| P3.17 | The speed of the integration loop | 0: Disabled 1: Enabled | 0 | * |
| P3.18 | Reserved |  |  |  |
| P3.19 | Reserved |  |  |  |
| P3.20 | Reserved |  |  |  |
| P3.21 | Reserved |  |  |  |
| P3.22 | Reserved |  |  |  |


| Group P4: V/F Control Parameters |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| P4.00 | Setting the V/F curve | 0: Linear V/F curve <br> 1: Multipoint V/F curve <br> 2: Square V/F curve <br> 3: 1.2-fold V/F curve <br> 4: 1.4-fold V/F curve <br> 6: 1.6-fold V/F curve <br> 8: 1.8-fold V/F curve <br> 9: Reserved <br> 10: V/F complete separation <br> 11: V/F half-section | 0 | $\star$ |
| P4.01 | Increase of torque | 0.0\%: Automatic increasing <br> 0.1\% - 30.0\%: Manual increasing | by the model | 3 |
| P4.02 | Torque limitation | 0.00 Hz - maximum output frequency | 50.00 Hz | $\star$ |
| P4.03 | Multi-point V/F frequency curve 1 | 0.00 Hz - P4.05 | 0.00 Hz | $\star$ |
| P4.04 | Multipoint V/F voltage curve 1 | 0.0\% - 100.0\% | 0.0 \% | $\star$ |
| P4.05 | Multi-point V/F frequency curve 2 (F2) | P4.03-P4.07 | 0.00 Hz | $\star$ |
| P4.06 | Multipoint V/F voltage curve 2 (V2) | 0.0\% - 100.0\% | 0.0\% | $\star$ |
| P4.07 | Multi-point V/F frequency curve 3 (F3) | P4.05 - rated motor frequency (P2.04) | 0.00Hz | $\star$ |
| P4.08 | Multipoint V/F voltage curve 3 (V3) | 0.0\% - 100.0\% | 0.0\% | * |
| P4.09 | Constant slope compensation V/F | 0.0\% - 200.0\% | 0.0\% | * |


| P4.10 | V/F over excitation | 0-200 | 64 | $\pm$ |
| :---: | :---: | :---: | :---: | :---: |
| P4.11 | V/F suppression of oscillation | 0-100 | by the model | * |
| P4.13 | Voltage source for V/F separation | 0: Digital setting (P4.14) <br> 1: FIV <br> 2: FIC <br> 3: Reserved <br> 4: Impulse setting (S3), option <br> 5: Step speed <br> 6: Simple PLC <br> 7: PID <br> 8: The communication interface, $100 \%$ corresponds to the rated motor voltage (P2.02) | 0 | $\cdots$ |
| P4.14 | Digital voltage setting for V/F separation | OV - rated motor voltage | OV | 3 |
| P4.15 | Voltage rise time of V/F separation | $0.0 \mathrm{~s}-1000.0 \mathrm{~s}$, gives the time it takes to increase the output voltage from 0 V to the rated motor voltage | 0.0s | $\star$ |
| P4.16 | Voltage drop time during V/F separation | $0.0 \mathrm{~s}-1000.0 \mathrm{~s}$, gives the time it takes for the output voltage to drop from the nominal motor voltage to 0 V | 0.0s | H |

Group P5: Input terminals

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P5.00 | Function selection FWD | 0: No function <br> 1: RUN forward (FWD) <br> 2: Reverse RUN (REV) <br> 3: Three-wire control <br> 4: RUN forward JOG (FJOG) <br> 5: Reverse RUN (RJOG) <br> 6: Terminal UP <br> 7: Terminal DOWN <br> 8: Gradual stop <br> 9: RESET of the fault (RESET) <br> 10: Pause during RUN <br> 11: Normally open (NO) <br> external error input <br> 12: Multiple terminal 1 <br> 13: Multiple terminal 2 <br> 14: Multiple terminal 3 <br> 15: Multiple terminal 4 <br> 16: Terminal 1 for selecting acceleration / deceleration time <br> 17: Terminal 2 for selecting acceleration / deceleration time <br> 18: Switching frequency source <br> 19: Reset via UP and DOWN (terminal, control panel) <br> 20: Command source switchover terminal <br> 21: Acceleration / deceleration disabled <br> 22: Pause of PID <br> 23: Recovering the PLC status <br> 24: Swing pause <br> 25: Counter input <br> 26: Reset the counter <br> 27: Length count input <br> 28: Resetting the length <br> 29: Torque control disabled <br> 30: Pulse input (S3 only), option <br> 31: Reserved | 1 | $\star$ |
| P5.01 | Select of funct. REV | 33: Normal close (NC) input of external fault (via S1 suitable for PTC) | 4 | $\star$ |
| P5.02 | Select of function S1 |  | 9 | * |
| P5.03 | Select of function S2 |  | 12 | * |


| P5.04 | Select of function S3 |  | 13 | $\star$ |
| :---: | :---: | :---: | :---: | :---: |
| P5.05 | Select of function S4 | 34: Changing the frequency is disabled <br> 35: Reverse direction of PID <br> 36: Terminal 1 for external STOP <br> 37: Terminal 2 for command source switch <br> 38: Pause the PID integration <br> 39: Switching between the main $X$ <br> source and the preset frequency <br> 40: Switching between the $Y$ source and <br> the preset frequency <br> 41: Motor selection terminal 1 <br> 42: Motor selection terminal 2 <br> 43: Switching PID parameters <br> 44: Reserved <br> 45: Reserved <br> 46: Switching - speed control / torque control <br> 47: Emergency Stop <br> 48: Terminal 2 for external STOP <br> 49: DC braking with delay <br> 50: Reset the current operating time <br> 51-59: Reserved | 0 | $\star$ |
| P5.10 | Filter time | 0.000s-1.000s | 0.010 s | H |
| P5.11 | Command mode via terminal block | 0: Two-wire mode 1 <br> 1: Two-wire mode 2 <br> 2: Three-wire mode 1 <br> 3: Three-wire mode 2 | 0 | $\star$ |
| P5.12 | Change value by terminals UP/DOWN | $0.001 \mathrm{~Hz} / \mathrm{s}-65.535 \mathrm{~Hz} / \mathrm{s}$ | $1.00 \mathrm{~Hz} / \mathrm{s}$ | $\cdots$ |
| P5.13 | Fl curve 1 min. input | 0.00V - P5.15 | 0.00 V | $\cdots$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P5.14 | Corresponding setting of FI curve 1 min. input | -100.0\% - + 100.0\% | 0.0\% | N |
| P5.15 | FI curve 1 max. input | P5.13-+10.00V | 10.00 V | $\star$ |
| P5.16 | Corresponding setting of FI curve 1 max. input | -100.0\% - + 100.0\% | 100.0\% | $\star$ |
| P5.17 | FI filter curve time 1 | 0.00s-10.00 s | 0.10s | * |
| P5.18 | Fl curve 2 min . input | 0.00V - P5.20 | 0.00V | * |
| P5.19 | Corresponding setting of FI curve 2 min. input | -100.0\% - + 100.0\% | 0.0\% | * |
| P5.20 | FI curve 2 max. input | P5.18-+10.00V | 10.00V | * |
| P5.21 | Corresponding setting of FI curve 2 max. input | -100.0\% - +100.0\% | 100.0\% | H |
| P5.22 | FI filter curve time 2 | 0.00s-10.00 s | 0.10s | * |
| P5.23 | FI curve 3 min . input | -10.00V - P5.25 | -10.00V | * |
| P5.24 | Corresponding setting of FI curve 3 min. input | -100.0\% - +100.0\% | -100.0\% | * |
| P5.25 | FI curve 3 max. input | P5.23-+10.00V | 10.00V | * |
| P5.26 | Corresponding setting of FI curve 3 min. input | -100.0\% - + 100.0\% | 100.0\% | H |
| P5.27 | FI filter curve time 3 | 0.00s-10.00s | 0.10s | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P5.28 | IMPULS minimum input | 0.00kHz - P5.30 | 0.00 kHz | H |
| P5.29 | Corresponding minimum input impulse setting | -100.0\%-100.0\% | 0.0\% | $\cdots$ |
| P5.30 | IMPULS maximum input | P5.28-100.00kHz | 50.00 kHz | H |
| P5.31 | Corresponding maximum input impulse setting | -100.0\%-100.0\% | 100.0\% | H |
| P5.32 | Filter time of impulse curve | 0.00s-10.00s | 0.10s | $\cdots$ |
| P5.33 | Selection of FI curve | Units: Selection of FIV curve <br> 1: Curve 1 (2-point, see P5.13-P5.16) <br> 2: Curve 2 (2-point, see P5.18-P5.21) <br> 3: Curve 3 (2-point, see P5.23-P5.26) <br> 4: Curve 4 (4-point, see C6.00-C6.07) <br> 5: Curve 5 (4-point, see C6.08-C6.15) <br> Tens: Selection of FIC curve (1-5, the same as FIV) <br> Hundreds: reserved | 321 | N |
| P5.34 | Set the FI to less than the minimum input | Units: Set the FIV to less than the minimum input <br> 0 : Minimum value <br> 1: 0.0\% <br> Tens: Set the FIC to less than the minimum input (0-1, the same as FIV) Hundreds: reserved | 000 | * |
| P5.35 | FWD delay time | 0.0s-3600.0s | 0.0s | $\star$ |
| P5.36 | REV delay time | 0.0s-3600.0s | 0.0s | $\star$ |


| P5.37 | S1 delay time | 0.0s - 3600.0s | 0.0 s | $\star$ |
| :--- | :--- | :--- | :---: | :---: |
| P5.38 | Units: FWD allowed mode <br> Selecting the <br> allowed S-mode 1 <br> 1: Low level allowed <br> Tens: REV <br> Hundreds: S1 <br> Thousands: S2 <br> Tens of thousands: S3 | 00000 |  |  |
| P5.39 | Selecting the <br> allowed S-mode 2 | U: High level allowed <br> 1: Low level enabled | 0 | $\star$ |

## Group P6: Output terminals

| $\begin{array}{\|l\|} \hline \text { Function } \\ \text { code } \end{array}$ | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P6.00 | M01 output mode | 1: Turn on the output signal (M01) | 1 | N |
| P6.01 | Functions M01 $(0-40)$ | 0: No output <br> 1: Inverter in RUN mode <br> 2: Output error (stop) <br> 3: Detection of the FDT1 frequency level <br> 4: Frequency achieved <br> 5: Run at zero speed <br> 6: Pre-warning of overloading the motor <br> 7: Pre-warning of overloading the inverter <br> 8: Set counter value reached <br> 9: Required value of counter reached <br> 10: Length reached <br> 11: The entire PLC cycle completed <br> 12: The cumulative operating time reached <br> 13: Limited frequency <br> 14: Limited torque <br> 15: The inverter is ready to RUN <br> 16: FIV>FIC <br> 17: The upper frequency limit reached <br> 18: The lower frequency limit reached <br> 19: Under voltage <br> 20: Communication setting <br> 21: Reserved <br> 22: Reserved <br> 23: Run at zero speed <br> 24: Total time Under voltage reached <br> 25: Detection of the FDT2 frequency level <br> 26: Frequency reached 1 <br> 27: Frequency reached 2 <br> 28: Current reached 1 <br> 29: Current reached 2 <br> 30: Time reached <br> 31: FIV entry limit exceeded <br> 32: Zero load <br> 33: Reverse RUN <br> 34: Zero current <br> 35: Module temperature reached <br> 36: Exceeded output current limit <br> 37: Frequency lower limit reached <br> 38: Output alarm (continues to run) <br> 39: Reserved <br> 40: Current running time reached | 0 | $\cdots$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P6.02 | Relay output function (RA-RBRC) | The same as M01 | 2 | A |
| P6.03-P6.05 Reserved |  |  |  |  |
| P6.07 | FOV selection the function of output $(0-16)$ | 0: Frequency during RUN <br> 1: Set frequency <br> 2: Output current <br> 3: Output torque <br> 4: Output power <br> 5: Output voltage <br> 6: Pulse input ( $100.0 \%$ means 100.0 kHz ) <br> 7: FIV <br> 8: FIC <br> 9: Reserved <br> 10: Length <br> 11: Numbered value of counter <br> 12: Communication setup <br> 13: Speed of engine rotation <br> 14: Output current ( $100.0 \%$ means 1000 A ) <br> 15: Output Voltage ( $100.0 \%$ means 1000 V ) <br> 16: Reserved | 0 | A |
| P6.08 | Reserved |  |  |  |
| P6.09 | Reserved |  |  | 4 |
| P6.10 | FOV zero offset coefficient | -100.0\%-+100.0\% | 0.0\% | * |
| P6.11 | FOV gain | -10.00-+10.00 | 1.00 | $\stackrel{3}{3}$ |
| P6.12 | Reserved |  |  | * |
| P6.13 | Reserved |  |  | H |
| P6.14 | Reserved |  |  |  |
| P6.15 | Reserved |  |  |  |
| P6.16 | Reserved |  |  |  |
| P6.17 | M01 time delay | 0.0s-3600.0 s | 0.0s | 4 |
| P6.18 | RA-RB-RC time delay | 0.0s-3600.0 s | 0.0s | 3 |
| P6.19 | Reserved |  |  |  |
| P6.20 | Reserved |  |  |  |
| P6.21 | Reserved |  |  |  |


| P6.22 | Selection of output terminal mode | ....X: M01 mode <br> 0 : Positive logic <br> 1: Negative Logic ...X.: RA-RB-RC mode <br> 0 : Positive logic <br> 1: Negative Logic <br> ..X..: Reserved <br> .X...: Reserved <br> X....: Reserved | 00000 | $\star$ |
| :---: | :---: | :---: | :---: | :---: |


| Group P7: Control panel a display |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| P7.00 | Correction power factor | 0.0-200.0 | 100.0 | A |
| P7.01 | Selection of the function of the JOG key Only valid for models V8004 T0370 to 4T2000 with two-line display | 0:JOG button is disabled on DP6-G-3 panels <br> 1: Switching between panel control and external control (terminal command channel or communication channel) <br> 2: Switching between FORWARD and REVERSE <br> 3: Activation of FORWARD JOG <br> 4: BACKWARD JOG activation <br> 5: Activation of the STOP button on DP6-E-2 panels | 0 |  |
| P7.02 | STOP/RESET button | 0: STOP/RESET key enabled only in operation panel control 1: STOP/RESET key enabled in any operation mode | 1 | $\stackrel{*}{*}$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P7.03 | Parameters 1, LED display during RUN | 0000 - FFFF <br> Bit00: Frequency of RUN $1(\mathrm{~Hz})$ <br> Bit01: Setting of frequency (Hz) <br> Bit02: Bus voltage (V) <br> Bit03: Output Voltage (V) <br> Bit04: Output Current (A) <br> Bit05: Output power (kW) <br> Bit06: Output torque (\%) <br> Bit07: Input S status <br> Bit08: Output status M01 <br> Bit09: FIV voltage (V) <br> Bit10: FIC voltage (V) <br> Bit11: Reserved <br> Bit12: Counter value <br> Bit13: Length value <br> Bit14: Display Load Speed <br> Bit15: PID setting | 1F | A |
| P7.04 | Parameters 2, LED display during RUN | 0000-FFFF <br> Bit00: PID Feedback <br> Bit01: PLC status <br> Bit02: Setting of frequency ( kHz ) <br> Bit03: Frequency 2 of operation ( Hz ) <br> Bit04: Remaining time of RUN mode <br> Bit05: FIV voltage before correction (V) <br> Bit06: FIC voltage before correction (V) <br> Bit07: Reserved <br> Bit08: Linear speed <br> Bit09: Current time under voltage <br> Bit10: Current time of Run mode (Min) <br> Bit11: Impulse setting of frequency ( kHz ) <br> Bit12: The value of communication <br> setting <br> Bit13: Reserved <br> Bit14: Display of the main frequency $X$ (Hz) <br> Bit15: Display of the auxiliary frequency $Y$ (Hz) | 0 | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P7.05 | LED display during STOP | 0000-FFFF <br> Bit00: Set frequency ( Hz ) <br> Bit01: Bus voltage (V) <br> Bit02: Status of input S <br> Bit03: Status of output M01 <br> Bit04: FIV voltage (V) <br> Bit05: FIC voltage (V) <br> Bit06: Reserved <br> Bit07: Counter value <br> Bit08: Length value <br> Bit09: PLC status <br> Bit10: Speed of load display <br> Bit11: PID setting <br> Bit12: Impulse setting of frequency (kHz) <br> Bit13: PID feedback value | 33 | H |
| P7.06 | Load speed display coefficient | 0.0001-6.5000 | 1.0000 | * |
| P7.07 | Inverter cooler temperature | $0.0^{\circ} \mathrm{C}-150.0^{\circ} \mathrm{C}$ | - | - |
| P7.08 | Real temperature of the module | $0.0^{\circ} \mathrm{C}-150.0^{\circ} \mathrm{C}$ | - | $\bullet$ |
| P7.09 | Total running time | Oh-65535 h | - | - |
| P7.10 | Reserved | - | - | - |
| P7.11 | Version of the software | e.g. 132.09 | - | $\bullet$ |
| P7.12 | Number of decimal places to display load speed | 0: 0 decimal places <br> 1: 1 decimal place <br> 2: 2 decimal places <br> 3: 3 decimal places | 1 | * |
| P7.13 | Total time under voltage | Oh-65535 hours | - | $\bullet$ |
| P7.14 | Total electricity consumption | $0 \mathrm{kWh}-65535 \mathrm{kWh}$ | - | $\bullet$ |


| Group P8: Auxiliary functions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| P8.00 | Jog (JOG) frequency | 0.00 Hz - maximum frequency | 2.00 Hz | $\stackrel{H}{2}$ |
| P8.01 | Jog acceleration (JOG) | 0.0s-6500.0s | 20.0s | $\stackrel{H}{*}$ |
| P8.02 | Jog deceleration (JOG) | 0.0s-6500.0s | 20.0s | * |
| P8.03 | Acceleration time 2 | 0.0s-6500.0s | by the model | $\stackrel{H}{3}$ |
| P8.04 | Deceleration time 2 | 0.0s-6500.0s | by the model | $\stackrel{H}{*}$ |
| P8.05 | Acceleration time 3 | 0.0s-6500.0s | by the model | A |
| P8.06 | Deceleration time 3 | 0.0s-6500.0s | by the model | A |
| P8.07 | Acceleration time 4 | 0.0s-6500.0s | by the model | $\stackrel{3}{4}$ |
| P8.08 | Deceleration time 4 | 0.0s-6500.0s | by the model | $\stackrel{H}{4}$ |
| P8.09 | Jump frequency 1 | 0.00 Hz - maximum frequency | 0.00 Hz | N |
| P8.10 | Jump frequency 2 | 0.00 Hz - maximum frequency | 0.00 Hz | H |
| P8.11 | Amplitude of the jump frequency | 0.00 Hz - maximum frequency | 0.01 Hz | $\stackrel{H}{*}$ |
| P8.12 | Dead zone time when changing rotation | 0.0s-3000.0s | 0.0s | A |
| P8.13 | Control of reverse run | 0: disabled <br> 1: enabled | 0 | $\stackrel{H}{*}$ |
| P8.14 | Mode of operation when the set frequency is lower than the lower limit | 0 : RUN at the lower frequency limit <br> 1: Stop <br> 2: RUN at zero speed | 0 | $\stackrel{H}{*}$ |
| P8.15 | Balance control | $0.00 \mathrm{~Hz}-10.00 \mathrm{~Hz}$ | 0.00Hz | M |
| P8.16 | Limit of total turn-on time | Oh - 65000 hours | Oh | $\stackrel{H}{4}$ |
| P8.17 | Total time of operation the inverter | Oh - 65000 hours | Oh | $\stackrel{H}{*}$ |
| P8.18 | The protection at start | 0: disabled <br> 1: enabled | 0 | $\stackrel{H}{4}$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P8. 19 | Frequency detection value (FDT1) | 0.00 Hz - maximum frequency | 50.00 Hz | $\stackrel{H}{*}$ |
| P8.20 | Hysteresis detection value (FDH) | 0.0\%-100.0\% (FDT1) | 5.0\% | * |
| P8.21 | Achieved range of frequency detection | $0.00 \mathrm{~Hz}-100 \%$ (maximum frequency) | 0.0\% | $\stackrel{H}{*}$ |
| P8. 22 | Jump frequency during acceleration / deceleration | 0 : disabled 1: enabled | 0 | N |
| P8.25 | Frequency switching point between acceleration time 1 and acceleration time 2 | 0.00 Hz - maximum frequency | 0.00 Hz | * |
| P8.26 | Frequency switching point between deceleration time 1 and deceleration time 2 | 0.00 Hz - maximum frequency | 0.00 Hz | * |
| P8.27 | Terminal JOG preferred | 0: disabled 1: enabled | 0 | * |
| P8.28 | Frequency detection value (FDT2) | 0.00 Hz - maximum frequency | 50.00 Hz | * |
| P8.29 | Hysteresis detection value (FDT2) | 0.0\% - 100.0\% (FDT2 level) | 5.0\% | $\stackrel{H}{*}$ |
| P8.30 | Frequency reaching the detected value 1 | 0.00 Hz - maximum frequency | 50.00 Hz | * |
| P8.31 | Frequency reaching the amplitude value $1$ | 0.0\% - 100.0\% (maximum frequency) | 0.0\% | N |
| P8.32 | Frequency reaching the detected value 2 | 0.00 Hz - maximum frequency | 50.00 Hz | $\star$ |
| P8.33 | Frequency reaching the amplitude value $2$ | 0.0\% - 100.0\% (maximum frequency) | 0.0\% | H |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P8.34 | Level of zero current detection | $\begin{aligned} & 0.0 \%-300.0 \% \\ & 100.0 \% \text { of rated motor current } \end{aligned}$ | 5.0\% | * |
| P8.35 | The delay time of zero current detection | 0.01s-600.00s | 0.10s | $\cdots$ |
| P8.36 | Exceeding the output current limit | 0.0 \% - no detection <br> 0.1 \% - 300.0 \% (rated motor current) | 200.0\% | * |
| P8.37 | Delay time when crossing the limit | 0.00s-600.00s | 0.00s | $\cdots$ |
| P8.38 | Current reaching the value of detection 1 | 0.0-300.0\% (rated motor current) | 100.0\% | * |
| P8.39 | Current reaching the value of amplitude 1 | 0.0-300.0\% (rated motor current) | 0.0\% | $\star$ |
| P8.40 | Current reaching the value of detection 2 | 0.0-300.0\% (rated motor current) | 100.0\% | * |
| P8.41 | Current reaching the value of amplitude 2 | 0.0-300.0\% (rated motor current) | 0.0\% | $\stackrel{H}{*}$ |
| P8.42 | Selection of timing function | 0: disabled 1: enabled | 0 | * |
| P8.43 | Selection of source the timing | $\begin{aligned} & \text { 0: P8.44 } \\ & \text { 1: FIV } \\ & \text { 2: FIC } \\ & \text { 3: Reserved } \\ & \text { 100\% of the analog input corresponds to } \\ & \text { P8.44 } \end{aligned}$ | 0 | * |
| P8.44 | Time of duration | 0.0 min - 6500.0 min | 0.0 min | M |
| P8.45 | Lower limit of input voltage FIV | 0.00V - P8.46 | 3.10 V | N |
| P8.46 | Upper limit of input voltage FIV | P8.45-10.00V | 6.80 V | * |


| P8.47 | Inverter temperature | $0^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | H |
| :---: | :---: | :---: | :---: | :---: |
| P8.48 | Fan control | 0 : The fan works only during operation <br> 1: The fan works continuously | 0 | $\stackrel{H}{*}$ |
| P8.49 | Frequency at wakeup | Frequency during sleep (P8.51) maximum frequency (P0.12) | 0.00 Hz | $\stackrel{H}{*}$ |
| P8.50 | Delay of wake-up | 0.0s-6500.0s | 0.0s | $\stackrel{3}{3}$ |
| P8.51 | Frequency during sleep | 0.00 Hz - frequency at wake-up (P8.49) | 0.00 Hz | $\stackrel{H}{*}$ |
| P8.52 | Delay of sleep | 0.0s-6500.0s | 0.0s | $\stackrel{3}{3}$ |
| P8.53 | Running time reached | 0.0 min - 6500.0 min | 0.0 min | $\star$ |


| Group P9: Faults and protection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| P9.00 | Selection of overload protection | 0: protection disabled <br> 1: protection enabled | 1 | N |
| P9.01 | Increasing motor overload protection | 0.20-10.00 | 1.00 | $\stackrel{H}{*}$ |
| P9.02 | Motor overload warning coefficient | 50\%-100\% | 80\% | $\stackrel{H}{2}$ |
| P9.03 | Increasing overload of DC overvoltage | 0-100 (when activate the dynamic braking, set 0 ) | 10 | $\stackrel{H}{*}$ |
| P9.04 | Overvoltage stall protective voltage | 120\%-150\% | 130\% | $\star$ |
| P9.05 | Over current increasing | 0-100 | 20 | * |
| P9.06 | Over current protection | 100\% - 200\% | 150\% | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9.07 | To test short to ground after switching on | $\begin{aligned} & \text { 1: test } \\ & \text { 0: do not test } \end{aligned}$ | 1 | * |
| P9.09 | Auto restoration times after malfunction | 0-20 | 0 | * |
| P9.10 | Output state M01 during auto-recovery after malfunction | 0: no activity; <br> 1: activity | 0 | * |
| P9.11 | Auto-recovery interval after malfunction | 0.1s-100.0s | 1.0 s | * |
| P9.12 | Reserved |  |  | $\star$ |
| P9.13 | Turn on protection when the output phase fails | 0 : disabled <br> 1: enabled | 1 | * |
| P9.14 | The first type of malfunction | 0 : No fault <br> 1: Inverter fault <br> 2: Over current during acceleration <br> 3: Over current during deceleration <br> 4: Over current at constant speed <br> 5: Overvoltage during acceleration <br> 6: Overvoltage during deceleration <br> 7: Overvoltage at constant speed <br> 8: Braking resistance overload <br> 9: Low Voltage <br> 10: Overloaded inverter <br> 11: Overloaded motor <br> 12: Reserved <br> 13: Power phase failure <br> 14: Overheating of the inverter <br> 15: External device error <br> 16: Communication error <br> 17: Contactor Error <br> 18: Error of current detection <br> 19: Error of automatic tuning <br> 20: Reserved <br> 21: EPROM memory error <br> 22: Hardware error of the inverter | - | - |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9.15 | The second type of malfunction | 23: Short to ground <br> 24: Reserved <br> 25: Reserved <br> 26: Total operating time reached <br> 27: Reserved <br> 28: Reserved <br> 29: Total time under voltage (operating time) | - | - |
| P9.16 | The third (last) type of malfunction | 30: Zero load <br> 31: Loss of feedback from the PID controller <br> 40: Current limit failure <br> 41 -43: Reserved <br> 51: Reserved | - | - |
| P9.17 | Frequency at the 3rd error | - | - | - |
| P9.18 | Current at the 3rd error | - | - | - |
| P9.19 | Bus voltage at the 3rd error | - | - | - |
| P9. 20 | State of input terminals at the 3rd error | - | - | - |
| P9. 21 | State of output terminals at the 3rd error | - | - | - |
| P9. 22 | Inverter status at 3rd error | - | - | $\bullet$ |
| P9. 23 | Duration of turn on at 3rd error | - | - | - |
| P9. 24 | Duration of run mode at 3rd error | - | - | $\bullet$ |
| P9. 25 | Reserved | - | - | - |
| P9.26 | Reserved | - | - | - |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9. 27 | Frequency at the 2nd error | - | - | - |
| P9. 28 | Current at the 2nd error | - | - | $\bullet$ |
| P9. 29 | Bus voltage at the 2nd error | - | - | $\bullet$ |
| P9.30 | State of input terminals at the 2nd error | - | - | - |
| P9.31 | State of output terminals at the 2nd error | - | - | - |
| P9.32 | Inverter status at 2nd error | - | - | - |
| P9.33 | Duration of turn on at 2nd error | - | - | - |
| P9.34 | Duration of run mode at 2nd error | - | - | $\bullet$ |
| P9.35 | Reserved | - | - | - |
| P9.36 | Reserved | - | - | - |
| P9.37 | Frequency at the 1st error | - | - | - |
| P9.38 | Current at the 1st error | - | - | - |
| P9.39 | Bus voltage at the 1st error | - | - | - |
| P9.40 | State of input terminals at the 1st error | - | - | - |
| P9.41 | State of output terminals at the 1st error |  |  |  |
| P9.42 | Inverter status at 1st error |  |  |  |
| P9.43 | Duration of turn on at 1st error |  |  |  |
| P9.44 | Duration of run mode at 1st error |  |  |  |
| P9.45 | Reserved |  |  |  |
| P9.46 | Reserved |  |  |  |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9.47 | Selection of failure protection action 1 | .... X: Motor overload (OL1) <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues in run <br> ... X .: Reserved <br> ..X ..: Phase loss (LO) <br> .X ...: External device error (EF) <br> X ....: Communication error (CE) | 00000 | A |
| P9.48 | Selection of failure protection action 2 | ```....X: Reserved 0: Deceleration to stop ....X.: EEPROM error (EEP) 0: Deceleration to stop 1: STOP by stop mode ..X..: Reserved .X...: Reserved X....: Total time was reached (END1)``` | 00000 | * |
| P9.49 | Selection of failure protection action 3 | ....X: <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues in run ...X.: <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues in run <br> ..X..: The total time of power on was reached (END2) <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues in run <br> .X...: Zero load <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues to operate at $7 \%$ of the rated motor frequency and recovers the set frequency if the load resumes <br> X....: Loss of PID feedback <br> 0: Deceleration to stop <br> 1: STOP by stop mode <br> 2: Continues in run | 00000 | A |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9. 50 | Reserved |  |  |  |
| P9.51 | Reserved |  |  |  |
| P9.52 | Selection of displaying the quantity on the 2nd line of the display | 0: Running frequency <br> 1: Set frequency <br> 2: DC bus voltage <br> 3: Output voltage <br> 4: Output current <br> 5: Output power <br> 6: Output torque <br> 7: Status of terminal S <br> 8: Status of terminal M01 |  |  |
| P9.54 | Frequency selection for continuing to run | 0: Actual running frequency <br> 1: Set frequency <br> 2: The upper frequency limit <br> 3: The lower frequency limit <br> 4: Backup frequency for error | 0 | * |
| P9.55 | Backup frequency at error | 60.0\%-100.0\% | 100.0\% | A |
| P9.56 | Reserved |  |  | $\stackrel{H}{2}$ |
| P9.57 | Reserved |  |  | $\stackrel{H}{4}$ |
| P9.58 | Reserved |  |  | * |
| P9.59 | Selection of activity in case of a sudden power outage | 0 : Invalid <br> 1: Deceleration <br> 2: Deceleration to stop | 0 | * |
| P9.60 | The action will suspend the voltage monitoring during a sudden power outage | 0.0\%-100.0\% | 100.0\% | H |
| P9.61 | Power monitoring time in case of a sudden power outage | 0.00s-100.00s | 0.50s | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| P9.62 | Voltage during power failure | 60.0\%-100.0 \% (bus voltage) | 80.0\% | $\star$ |
| P9.63 | Protection at zero load | 0 : disabled <br> 1: enabled | 0 | * |
| P9.64 | Level of zero load detection | 0.0-100.0\% | 10.0\% | * |
| P9.65 | The zero load detection time | 0.0-60.0s | 1.0s | H |
| P9.67 | Reserved |  |  |  |
| P9.68 | Reserved |  |  |  |
| P9.69 | Reserved |  |  |  |
| P9.70 | Reserved |  |  |  |

## Group PA: PID process control functions

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PA. 00 | Setting of source the required value of PID | ```0: PA.01 1: FIV 2: FIC 3: Reserved 4: IMPULSE setting (S3), option 5: Communication setting 6: Multiple meaning``` | 0 | * |
| PA. 01 | Digital setting of PID | 0.0\%-100.0\% | 50.0\% | * |
| PA. 02 | Setting of source the feedback of PID | ```0: FIV 1: FIC 2: Reserved 3: FIV-FIC 4: IMPULSE setting (S3), option 5: Communication setting 6: FIV+FIC MULTI REFERENCE 7: MAX(\|FIV|, |FIC|) 8: MIN(|FIV|, |FIC|)``` | 0 | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PA. 03 | Direction of action the PID | 0 : Action forward <br> 1: Action backward | 0 | * |
| PA. 04 | Setting range of PID feedback | 0-65535 | 1000 | * |
| PA. 05 | Linear constant Kp1 | 0.0-100.0 | 20.0 | * |
| PA. 06 | Integration constant Ti1 | 0.01 s-10.00s | 2.00s | * |
| PA. 07 | Derivation constant Td1 | 0.000-10.000s | 0.000s | * |
| PA. 08 | Disconnection frequency PID of reverse rotation | 0.0 - maximum frequency | 2.00 Hz | $\cdots$ |
| PA. 09 | Limit of PID deviation | 0.0\%-100.0\% | 0.0\% | $\star$ |
| PA. 10 | PID differential limit | 0.00\% - 100.00\% | 0.10\% | * |
| PA. 11 | Setting the PID change time | 0.00-650.00s | 0.00s | $\stackrel{H}{*}$ |
| PA. 12 | The time of filtering PID feedback | 0.00-60.00s | 0.00s | * |
| PA. 13 | The time of filtering PID output | 0.00-60.00s | 0.00s | * |
| PA. 14 | Reserved |  |  | * |
| PA. 15 | Linear constant Kp2 | 0.0-100.0 | 20.0 | $\pi^{3}$ |
| PA. 16 | Integration constant Ti2 | 0.01s-10.00s | 2.00s | H |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PA. 17 | Derivation constant Td2 | 0.000s - 10.000s | 0.000s | * |
| PA. 18 | Switching condition of PID parameters | 0 : No switching <br> 1: Switching over S <br> 2: Automatic switching based on deviation | 0 | A |
| PA. 19 | Parameter switching deviation PID 1 | 0.0\% - PA. 20 | 20.0\% | * |
| PA. 20 | Parameter switching deviation PID 2 | PA.19-100.0\% | 80.0\% | * |
| PA. 21 | Initial value of PID | 0.0\%-100.0\% | 0.0\% | H |
| PA. 22 | Initial value of delaying PID | 0.00-650.00s | 0.00s | * |
| PA. 23 | Maximum deviation between two PID outputs in the forward direction | 0.00\%-100.00\% | 1.00\% | H |
| PA. 24 | Maximum deviation between two PID outputs in the backward direction | 0.00\%-100.00\% | 1.00\% | * |
| PA. 25 | Properties of PID integration | .X: Separated integration <br> 0: disabled <br> 1: enabled <br> X.: Stop the integration when the output reaches the required limit <br> 0 : Continuing of integration <br> 1: Stop of integration | 00 | $\stackrel{*}{*}$ |
| PA. 26 | Detection of PID controller feedback loss | $0.0 \%=$ loss of feedback is not detected 0.1\%: 100.0\% | 0.0\% | * |


| PA. 27 | Detection time when <br> PID controller <br> feedback is lost | $0.0 \mathrm{~s}-20.0 \mathrm{~s}$ | 0.0 s | sur |
| :---: | :---: | :--- | :---: | :---: |
| PA. 28 | Behaviour of PID in <br> case of loss of <br> feedback | 0: No action of PID and STOP <br> 1: PID action and STOP | 0 |  |

Group Pb: Variable frequency, fixed length and count

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| Pb. 00 | Set the swing frequency mode | 0 : Relative to the mean value of the frequency <br> 1: Relative to the maximum value of the frequency | 0 | H |
| Pb. 01 | Amplitude of swing frequency | 0.0\%-100.0\% | 0.0\% | * |
| Pb. 02 | Amplitude of the jump frequency | 0.0\%-50.0\% | 0.0\% | * |
| Pb. 03 | Frequency swing cycle | 0.1s-3000.0s | 10.0s | $\stackrel{H}{2}$ |
| Pb. 04 | Time coefficient of triangle wave rise | 0.1\%-100.0\% | 50.0\% | H |
| Pb. 05 | Set length | Om-65535m | 1000m | * |
| Pb. 06 | Actual length | 0m-65535m | Om | 4 |
| Pb. 07 | Number of pulses per meter | 0.1-6553.5 | 100.0 | * |
| Pb. 08 | Set counter value | 1-65535 | 1000 | N |
| Pb. 09 | Determined counter value | 1-65535 | 1000 | H |


| Group PC: Multiple functions and simple PLC function |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| PC. 00 | Multifunction 0 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 01 | Multifunction 1 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 02 | Multifunction 2 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 03 | Multifunction 3 | -100.0\% - 100.0\% | 0.0\% | H |
| PC. 04 | Multifunction 4 | -100.0\% - 100.0\% | 0.0\% | 沜 |
| PC. 05 | Multifunction 5 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 06 | Multifunction 6 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 07 | Multifunction 7 | -100.0\% - 100.0\% | 0.0\% | 幺 |
| PC. 08 | Multifunction 8 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 09 | Multifunction 9 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 10 | Multifunction 10 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 11 | Multifunction 11 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 12 | Multifunction 12 | -100.0\% - 100.0\% | 0.0\% | N |
| PC. 13 | Multifunction 13 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 14 | Multifunction 14 | -100.0\% - 100.0\% | 0.0\% | * |
| PC. 15 | Multifunction 15 | -100.0\% - 100.0\% | 0.0\% | N |
| PC. 16 | Run mode of the simple PLC | 0 : Stop after performing of one cycle of the inverter <br> 1: Holds the last values after the inverter performs one cycle <br> 2: Repeat after performing of one cycle of the inverter | 0 | * |
| PC. 17 | Setting the memory for selecting a simple PLC | .X: Storage after power failure <br> 0:No <br> 1:Yes <br> X.: Storage after the STOP command <br> 0:No <br> 1:Yes | 00 | * |
| PC. 18 | Duration of run mode the single PLC command 0 | 0.0s(h) - 6553.5s(h) | 0.0s(h) |  |
| PC. 19 | The acceleration / deceleration time of the simple PLC command 0 | 0-3 | 0 |  |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PC. 20 | Duration of run mode the single PLC command 1 | 0.0s(h) - 6553.5s(h) | 0.0s(h ) | $\pm$ |
| PC. 21 | The acceleration / deceleration time of the simple PLC command 1 | 0-3 | 0 | * |
| PC. 22 | Duration of run mode the single PLC command 2 | 0.0s(h) - $6553.5 \mathrm{~s}(\mathrm{~h})$ | 0.0s(h) | $\pm$ |
| PC. 23 | The acceleration / deceleration time of the simple PLC command 2 | 0-3 | 0 | H |
| PC. 24 | Duration of run mode the single PLC command 3 | 0.0s(h) - $6553.5 \mathrm{~s}(\mathrm{~h})$ | 0.0s(h) | $\pm$ |
| PC. 25 | The acceleration / deceleration time of the simple PLC command 3 | 0-3 | 0 | * |
| PC. 26 | Duration of run mode the single PLC command 4 | 0.0s(h) - 6553.5s(h) | 0.0s(h) | H |
| PC. 27 | The acceleration / deceleration time of the simple PLC command 4 | 0-3 | 0 | H |
| PC. 28 | Duration of run mode the single PLC command 5 | 0.0s(h) - 6553.5s(h) | 0.0s(h) | * |
| PC. 29 | The acceleration / deceleration time of the simple PLC command 5 | 0-3 | 0 | * |
| PC. 30 | Duration of run mode the single PLC command 6 | 0.0s(h) - $6553.5 \mathrm{~s}(\mathrm{~h})$ | 0.0s(h) | $\pm$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PC. 31 | The acceleration / deceleration time of the simple PLC command 6 | 0-3 | 0 | 4 |
| PC. 32 | Duration of run mode the single PLC command 7 | 0.0s(h) - 6553.5s(h) | 0.0s(h) | $\pm$ |
| PC. 33 | The acceleration / deceleration time of the simple PLC command 7 | 0-3 | 0 | * |
| PC. 34 | Duration of run mode the single PLC command 8 | 0.0s(h) - $6553.5 \mathrm{~s}(\mathrm{~h})$ | 0.0s(h ) | A |
| PC. 35 | The acceleration / deceleration time of the simple PLC command 8 | 0-3 | 0 | * |
| PC. 36 | Duration of run mode the single PLC command 9 | 0.0s(h) - 6553.5s(h) | 0.0s(h ) | H |
| PC. 37 | The acceleration / deceleration time of the simple PLC command 9 | 0-3 | 0 | * |
| PC. 38 | Duration of run mode the single PLC command 10 | 0.0s(h) - 6553.5s(h) | 0.0s (h ) | * |
| PC. 39 | The acceleration / deceleration time of the simple PLC command 10 | 0-3 | 0 | $\stackrel{3}{3}$ |
| PC. 40 | Duration of run mode the single PLC command 11 | 0.0s (h) - 6500.0s (h) | 0.0s (h ) | * |
| PC. 41 | The acceleration / deceleration time of the simple PLC command 11 | 0-3 | 0 | $\star$ |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PC. 42 | Duration of run mode the single PLC command 12 | 0.0s (h) - 6500.0s (h) | 0.0s (h ) | * |
| PC. 43 | The acceleration / deceleration time of the simple PLC command 12 | 0-3 | 0 | 4 |
| PC. 44 | Duration of run mode the single PLC command 13 | 0.0s (h) - 6500.0s (h) | 0.0s (h ) | $\pm$ |
| PC. 45 | The acceleration / deceleration time of the simple PLC command 13 | 0-3 | 0 | 2 |
| PC. 46 | Duration of run mode the single PLC command 14 | 0.0s (h) - 6500.0s (h) | 0.0s(h ) | A |
| PC. 47 | The acceleration / deceleration time of the simple PLC command 14 | 0-3 | 0 | H |
| PC. 48 | Duration of run mode the single PLC command 15 | 0.0s (h) - 6500.0s (h) | 0.0s(h ) | * |
| PC. 49 | The acceleration / deceleration time of the simple PLC command 15 | 0-3 | 0 | 3 |
| PC. 50 | Time unit of a simple PLC | $\begin{aligned} & \text { 0: S (seconds) } \\ & \text { 1: H (hours) } \\ & \hline \end{aligned}$ | 0 | $\pm$ |
| PC. 51 | Source 0 | 0: Set from PC. 00 <br> 1: FIV <br> 2: FIC <br> 3: Reserved <br> 4: IMPULSE setting <br> 5: PID <br> 6: Set according to the preset frequency (P0.10), modified by UP / DOWN keys | 0 | * |

## Group PD: Communication parameters

| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| PD. 00 | Transfer speed | Units: MODBUS <br> 0: 300 BPS <br> 1: 600 BPS <br> 2: 1200 BPS <br> 3: 2400 BPS <br> 4: 4800 BPS <br> 5: 9600 BPS <br> 6: 19200 BPS <br> 7: 38400 BPS <br> 8: 57600 BPS <br> 9: 115200 BPS <br> Tens: Reserved <br> Hundreds: Reserved <br> Thousands: Reserved | 0005 | $\stackrel{H}{3}$ |
| PD. 01 | Data format | 0 : No parity, data format <8, N,2> <br> 1: Even parity, data format $<8, E, 1>$ <br> 2: Odd parity, data format $\langle 8,0,1>$ <br> 3: No parity, data format <8, N,1> Valid to MODBUS | 3 | H |
| PD. 02 | Local address | 1-247: Broadcast address | 1 | $\stackrel{3}{3}$ |
| PD. 03 | Delay of reply | Oms - 20ms | 2 | N |
| PD. 04 | Communication timeout | 0.0 (invalid) 0.1s-60.0s | 0.0 | * |
| PD. 05 | Selection of the MODBUS transmission protocol | .X: MODBUS protocol <br> 0: Non-standard MODBUS protocol <br> 1: Standard MODBUS protocol <br> X.: Reserved | 1 | H |
| PD. 06 | Current communication resolution | $\begin{aligned} & 0: 0.01 \mathrm{~A} \\ & 1: 0.10 \mathrm{~A} \end{aligned}$ | 0 | $\cdots$ |

Group PF: Reserved for service

## Group PP: Restoring the factory settings and blocking the change of parameters

| Function <br> code | Parameter name | Setting range | Default <br> setting | Attribute |
| :---: | :---: | :--- | :---: | :---: |
| PP.00 | User Password | $0-65535$ | 0 | $\star$ |
| PP.01 | Restore factory <br> settings | 0: No activity <br> 01: Restore factory setting except motor <br> parameters <br> 02: Delete records <br> 11: High frequency control activated | 0 | $\star$ |
| PP.04 | Blocking of <br> parameter changes | 0: Parameter change allowed <br> $1:$ Parameter change is blocked |  |  |

## Group CO: Torque control and parameter limitation

| C0.00 | Selection of control the speed / torque | 0 : Speed control <br> 1: Torque control | 0 | $\star$ |
| :---: | :---: | :---: | :---: | :---: |
| C0.01 | Torque control source settings | 0 : Digital setting (CO.O3) <br> 1: FIV <br> 2: FIC <br> 3: Reserved <br> 4: IMPULSE setting, option <br> 5: Communication setting <br> 6: MIN (FIV,FIC) <br> 7: MAX (FIV,FIC) | 0 | $\star$ |
| C0.03 | Digital setting of torque control | -200.0\% - 200.0\% | 150.0\% | H |
| C0.05 | Maximum frequency forward at torque control | 0.0 Hz - maximum frequency | 50.00 Hz | * |
| C0.06 | Maximum frequency backward at torque control | 0.0 Hz - maximum frequency | 50.00 Hz | 3 |
| C0.07 | The acceleration time for torque control | 0.00s -650.00s | 0.00s | $\star$ |
| C0.08 | The deceleration time for torque control | 0.00s -650.00s | 0.00s | 3 |

Groups C1-C4: Reserved

| Group C5: Control optimization parameters |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Function } \\ & \text { code } \end{aligned}$ | Parameter name | Setting range | Default setting | Attribute |
| C5.00 | Upper limit of PWM frequency switching | $0.0 \mathrm{~Hz}-15 \mathrm{~Hz}$ | 12.00 Hz | $\stackrel{3}{3}$ |
| C5.01 | PWM modulation mode | 0: Asynchronous modulation <br> 1: Synchronous modulation | 0 | 3 |
| C5.02 | Compensation method | 0: No compensation <br> 1: Compensation mode 1 <br> 2: Compensation mode 2 | 1 | $\stackrel{3}{3}$ |
| C5.03 | Random dimension of PWM | 0: Disabled <br> 1-10: Random dimension of carrier frequency PWM | 0 | H |
| C5.04 | Open limitation of current | 0: Disabled <br> 1: Enabled | 1 | H |
| C5.05 | Detection of current compensation | 0-100 | 5 | 3 |
| C5.06 | Setting the undervoltage | 60.0\% - 140.0\% | 100.0\% | * |
| C5.07 | Selection SFVC optimization mode | 0: No optimization <br> 1: Optimization mode 1 <br> 2: Optimization mode 2 | 1 | H |


| Group C6: FI curve setting(FI means FIV or FIC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Function code | Parameter name | Setting range | Default setting | Attribute |
| C6.00 | The minimum of Fl curve 4 | -10.00V - C6.02 | 0.00V | * |
| C6.01 | Corresponding FI 4 curve setting, minimum | -100.0\% - + 100.0\% | 0.0\% | * |
| C6.02 | Fl curve 4 inflexion 1 | C6.00-C6.04 | 3.00 V | * |
| C6.03 | Corresponding curve setting FI 4 inflexion 1 | -100.0\% - + 100.0\% | 30.0\% | * |
| C6.04 | Fl curve 4 inflexion 2 | C6.02-C6.06 | 6.00 V | * |
| C6.05 | Corresponding curve setting FI 4 inflexion 2 | -100.0\% - + 100.0\% | 60.0\% | * |


| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| C6.06 | Fl curve 4 maximum | C6.06-+10.00V | 10.00 V | H |
| C6.07 | Corresponding FI 4 curve setting, maximum | -100.0\% - + 100.0\% | 100.0\% | A |
| C6.08 | The minimum of Fl curve 5 | -10.00V - C6.10 | 0.00V | $\stackrel{H}{3}$ |
| C6.09 | Corresponding FI 5 curve setting, minimum | -100.0\% - + 100.0\% | -100.0\% | H |
| C6.10 | Fl curve 5 inflexion 1 | C6.08-C6.12 | 3.00 V | $\stackrel{3}{3}$ |
| C6.11 | Corresponding curve setting FI 5 inflexion 1 | -100.0\% - + 100.0\% | -30.0\% | * |
| C6.12 | Fl curve 5 inflexion 2 | C6.10-C6.14 | 6.00 V | M |
| C6.13 | Corresponding curve setting FI 5 inflexion 2 | -100.0\% - + 100.0\% | 30.0\% | $\stackrel{H}{3}$ |
| C6.14 | Fl curve 5 maximum | C6.12-+10.00V | 10.00 V | $\stackrel{H}{3}$ |
| C6.15 | Corresponding FI 5 curve setting, maximum | -100.0\% - + 100.0\% | 100.0\% | $\cdots$ |
| C6.16 | FIV jump point | -100.0\%-100.0\% | 0.0\% | $\stackrel{3}{3}$ |
| C6.17 | Amplitude of the FIV jump | 0.0\%-100.0\% | 0.5\% | $\cdots$ |
| C6.18 | FIC jump point | -100.0\%-100.0\% | 0.0\% | H |
| C6.19 | Amplitude of the FIC jump | 0.0\%-100.0\% | 0.5\% | $\cdots$ |

Group C9: Special function PID

| Function <br> code | Parameter name | Setting range | Default <br> setting | Attribute |
| :---: | :---: | :--- | :---: | :---: |
| C9.00 | PID sleep frequency | $0-$ P0.12 | 0.00 Hz | 0.00 Hz |
| C9.01 | PID sleep time | $0-5000.0 \mathrm{~s}$ | 10.0 s | 0.0 s |
| C9.02 | PID wake-up value | $0-100 \%$ | $60.0 \%$ | $0.0 \%$ |



| Function code | Parameter name | Setting range | Default setting | Attribute |
| :---: | :---: | :---: | :---: | :---: |
| CC. 12 | FOV target voltage 1 | Default | Factory adjusted | * |
|  | Setting range | 0.500V-4.000V |  |  |
| CC. 13 | FOV measured voltage 1 | Default | Factory adjusted | * |
|  | Setting range | 0.500V-4.000V |  |  |
| CC. 14 | FOV target voltage 2 | Default | Factory adjusted | * |
|  | Setting range | 6.000V-9.999V |  |  |
| CC. 15 | FOV measured voltage 2 | Default | Factory adjusted | * |
|  | Setting range | 6.000V-9.999V |  |  |
| CC. 16 | Reserved |  |  |  |
| CC. 17 | Reserved |  |  |  |
| CC. 18 | Reserved |  |  |  |
| CC. 19 | Reserved |  |  |  |


| Group DO Monitoring parameters |  |  |
| :---: | :---: | :---: |
| Function | Parameter name | Unit |
| D0.00 | Run Frequency (Hz) | 0.01 Hz |
| D0.01 | Set frequency (Hz) | 0.01 Hz |
| D0.02 | Bus voltage (V) | 0.1 V |
| D0.03 | Output Voltage (V) | 1 V |
| D0.04 | Output current (A) | 0.01 A |
| D0.05 | Output power (kW) | 0.1 kW |
| D0.06 | Output torque (\%) | $0.1 \%$ |
| D0.07 | Input state of S-terminal | 1 |
| D0.08 | Output state of M01-terminal | 1 |
| D0.09 | Reserved |  |
| D0.10 | FIC voltage (V) | 0.01 V |
| D0.11 | Reserved |  |


| Function | Parameter name | Unit |
| :---: | :---: | :---: |
| D0.12 | Counter value | 1 |
| D0.13 | Length value | 1 |
| D0.14 | Load Speed | 1 |
| D0.15 | PID setting | 1 |
| D0.16 | PID Feedback | 1 |
| D0.17 | PLC status | 1 |
| D0.18 | Input pulse frequency | 0.01 kHz |
| D0.19 | Reserved |  |
| D0.20 | The remaining running time | 0.1 min |
| D0.21 | FIV voltage before correction | 0.001 V |
| D0.22 | FIC voltage before correction | 0.001V |
| D0.23 | Reserved |  |
| D0.24 | Linear speed | $1 \mathrm{~m} / \mathrm{min}$ |
| D0.25 | Total time under voltage | 1 min |
| D0.26 | Total running time | 0.1 min |
| D0.27 | Input frequency of pulse | 1 Hz |
| D0.28 | Setting of communications | 0.01 \% |
| D0.29 | Reserved |  |
| D0.30 | Main frequency $X$ | 0.01 Hz |
| D0.31 | Auxiliary frequency $Y$ | 0.01 Hz |
| D0.32 | Displaying any memory address value |  |
| D0.33 | Reserved |  |
| D0.34 | Reserved |  |
| D0.35 | Required torque | 0.1 \% |
| D0.36 | Reserved |  |
| D0.37 | Angle of the effective | 0.1 |
| D0.38 | Reserved |  |
| D0.39 | Target voltage for V/F separation | 1 V |
| D0.40 | Output voltage for V/F separation | 1 V |
| D0.41 | Reserved |  |
| D0.42 | Reserved |  |
| D0.43 | Reserved |  |
| D0.44 | Reserved |  |
| D0.45 | The current fault code | 0 |

## Example No. 1: Parameterisation of inverse control with a frequency voltage of 10 V to 0 V :



## Example No. 2: Parametrization of the brake resistor



P9.03=0 (activates the brake resistor)

## Example No. 3: Parameterisation for the control of the electric motor of the crane

## Installation procedure:

1./ connect the inverter, protections, connect the braking resistor, etc.
2./ connect the motor to the inverter (preferably without the clutch engaged - idle)
3./ set the motor parameters $\mathrm{P} 0.00=0 ; \mathrm{P} 0.01=1$ and $\mathrm{P} 2.01 ; \mathrm{P} 2.02 ; \mathrm{P} 2.03 ; \mathrm{P} 2.04$
4./ turn on automatic engine tuning P2.37=1
5./ the converter displays "Study" and we press START
6./ the converter is "paired" to the motor
7./ after the end of the autotuning, the inverter displays e.g. 50.0 Hz (set frequency)

Only then will we adjust the parameters according to the table below and connect the control!

| P0.00 | G constant load |  | 1 |
| :---: | :---: | :---: | :---: |
| P0.01 | SFVC control |  | 1 |
| P0.02 | Select command channel | Through the input terminals | 1 |
| P0.04 | Select the main frequency source $X$ |  | 06 |
| P2.01 | Rated motor power | Electric motor power 37 kW | 37 |
| P2.02 | Rated motor voltage | Voltage V from nameplate | 400 |
| P2.03 | Rated motor current | Current A from nameplate |  |
| P2.04 | Rated motor frequency | Frequency Hz from the nameplate | 50 |
| P2.37 | Automatic tuning |  | 1 |
| P5.00 | FWD function selection | RUN right at speed 1 | 1 |
| P5.01 | REV function selection | RUN left at speed 1 | 2 |
| P5.02 | S1 function selection | Not connected | 9 |
| P5.03 | S2 function selection | Speed 2 | 12 |
| P5.04 | S3 function selection | Not connected | 13 |
| PC. 00 | Multiple function 0 | Frequency in \% for speed 1 | 20 |
| PC. 01 | Multiple function 1 | Frequency in \% for speed 2 | 100 |
| P6.02 | RA-RB-RC relay output function (It is needed to release the external brake) | Frequency reached | 4 |
| P8.21 | The range of detection of the frequency reached | About 3 Hz , but we indicate it in \% | 12 |
| P9.03 | Activation of the integrated brake unit |  | 0 |

If you turn on FWD/GND, the inverter will start to the right at speed 1
If you turn on REV/GND, the inverter will run to the left at speed 1
If you turn on both FWD/GND and S2/GND at the same time, the inverter will run clockwise at speed 2
If you turn on both REV/GND and S2/GND at the same time, the inverter will run to the left at speed 2

## Example No. 4: PID application

The basic PID setting is as follows:

P0.02=1
P0.04=8
PA.00=0
PA.01= ...... target pressure value
PA.02=1 ( FIC)
PA.21= $\qquad$ PID initialization value

C9.00 : PID sleep frequency
C9.01 : PID sleep time
C9.02 : PID wake-up value
P8.49 : Wake-up frequency
P8.50 : Wake-up delay
P8.51 : Frequency during sleep
P8.52 : Sleep delay

## Example No. 5: High-speed spindle operation parameters

| High frequency control |  |  |  |
| :---: | :---: | :---: | :---: |
| PP.01 | 11 | P5.03 | 12 |
| P0.02 | 1 | P5.04 | 13 |
| P0.04 | 6 | P5.05 | 14 |
| P0.10 | 400.0 Hz | PC.01 | $25.0 \%$ |
| P0.12 | 400.0 Hz | PC.02 | $37.5 \%$ |
| P0.14 | 400.0 Hz | PC.03 | $50.0 \%$ |
| P0.22 | 1 | PC.04 | $62.5 \%$ |
| P4.11 | 0 | PC.05 | $75.0 \%$ |
| P2.04 | 0.50 V | PC.06 | $87.5 \%$ |
| P2.05 | 400.0 Hz | PC.07 | $100.0 \%$ |
| P0.08 | 24000 rpm | PC.51 | 0 |
| P0.09 | 10.0 s | C5.01 | 1 |
|  | 10.0 s |  |  |

## Chapter 5: Detailed description of parameters

Group PO : Basic parameters

| P0.00 | G/P typ * |  | Default | *Depends on the model |
| :---: | :---: | :---: | :--- | :--- |
|  | Setting value | 1 | 1: G type (constant torque load CT) |  |
|  |  | 2 | 2: P type (variable torque, eg fan, compressor, <br> pump, etc.) |  |

This parameter is used to display the supplied model and cannot be modified.
1: Applies to constant torque load with specified rated parameters .
2: Applies to variable torque load (fan and pump) with rated parameters.

| P0.01 | Selecting the control mode |  | Default | 0 |
| :---: | :---: | :---: | :--- | :---: |
|  | Setting value | 0 | Voltage / frequency control (V/F) |  |
|  |  | 1 | Flow vector control without sensor (SFVC) |  |

0: Voltage / frequency control (V/F)
It is used in applications with simple requirements or applications where one AC drive works with multiple motors, such as a fan and a pump.
1: Sensor-free flux vector control (SFVC).
It is an open-loop vector control and is applicable to high-performance control applications such as machine tools, centrifuges, wire drawing machines and injection molding machines. One AC unit can only control one motor.
NOTE: If vector control is used, automatic parameter tuning must be performed, as the benefits of vector control can only be realized after obtaining the correct motor parameters. Greater performance can be achieved by adjusting the engine parameters.

| P0.02 | Select command channel |  | Default | 0 |
| :---: | :---: | :---: | :--- | :--- |
|  | Setting value | 0 | 0: Control via the operation panel (LED does not <br> light) |  |
|  |  | 1 | 1: Control via input terminals (LED lights up) |  |
|  |  | 2 | 2: Control via PC (LED flashes) |  |

It is used to specify the input channel of AC control commands such as run, stop, forward, reverse and jog (JOG). You can enter commands in the following three channels:
0 : Control via the operation panel
Commands are entered by pressing the RUN and STOP / RESET buttons on the control panel.

## 1: Control via input terminals

Commands are entered through multi-function input terminals with functions such as FWD, REV, JOGF and JOGR.

2: Control via communication (MODBUS RTU)
Commands are entered from the host computer.

| P0.03 | Frequency source |  | Default | 00 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting value | . X :(frequency source) |  |  |
|  |  | 0 | Main source of frequency $X$ |  |
|  |  | 1 | $X$ and $Y$ operations (operating mode specified by dozens) |  |
|  |  | 2 | Swit |  |
|  |  | 3 | Switch b | and $Y$ " |
|  |  | 4 | 4: Switching | and Y " |
|  |  | X. : ( $X$ and Y operation) |  |  |
|  |  | 0 | $X+Y$ |  |
|  |  | 1 | $X-Y$ |  |
|  |  | 2 | Maximum $X$ and $Y$ |  |
|  |  | 3 | Minimum $X$ and $Y$ |  |

It is used to select the channel for setting the frequency. Through the main source of frequency $X$ and the source of auxiliary frequency $Y$, it reaches the desired frequency. Digit in units position (frequency source).
0 : Main frequency $X$
Main frequency $X$ as target frequency.
1: Specifies the relationship between frequency $X$ and auxiliary frequency $Y$.
It is specified by the digit in the tens place in the function code.
2: Switching between the main frequency source $X$ and the auxiliary frequency source $Y$.
When the multi-function input terminal 18 (frequency switch) is disabled, the main frequency $X$ is the target frequency. When the multi-function input terminal 18 is enabled, the auxiliary frequency $Y$ is the target frequency.
3: Switching frequencies between $X$ and " $X$ and $Y$ ".
When the multi-function input terminal 18 (frequency switch) is disabled, the main frequency $X$ is the target frequency. When the multi-function input terminal 18 is enabled, the resulting frequency is calculated using the auxiliary frequency.
4: Switching frequencies between $Y$ and " $X$ and $Y$ "
When the multi-function input terminal 18 (frequency switch) is disabled, the auxiliary frequency $Y$ is the target frequency. When the multi-function input terminal 18 is enabled, the resulting frequency is calculated using the auxiliary / main frequency.

## Tens digit (frequency source)

0 : The sum of the main and auxiliary frequencies $(X+Y)$ determines the target frequency.
1: The difference between main and auxiliary frequency ( $X-Y$ ) determines the target frequency.
2: MAX (main frequency source $X$, auxiliary frequency source $Y$ ), the target frequency is the frequency whose absolute value is larger.
3: MIN (main frequency source $X$, auxiliary frequency source $Y$ ), the target frequency is the frequency whose absolute value is smaller. In addition, when the selection of the frequency source is determined by the complementary calculation, the offset frequency can be set according to P0.21.


Select the main input channel of the given frequency inverter.
A total of 9 frequency channels are given:
0 : digital setting (does not remember setting after power loss)
Set the initial value of frequency P0.10 (frequency preset). You can use the $\uparrow$ and $\downarrow$ buttons (or the UP and DOWN multi-function input terminal) to change the set frequency of the inverter. The inverter resets the frequency values to P0.10 (digital frequency preset) after the power is turned off and the power is turned on again.
1: digital setting (does not remember setting after power loss)
Set the initial frequency value of P010 (frequency setting). They can be set with the keys $\uparrow, \downarrow$ (or the multifunctional input terminal UP and DOWN). After the power is turned off and the power is turned on again, the inverter will set the frequency according to the last
setting, you can make a correction through the $\uparrow$ and $\downarrow$ keys or through the UP and DOWN terminal.

It is necessary to remind that P0.23 sets the "digital frequency memory selection", P0.23 is used to select the inverter when the inverter stops, P0.23 is used to select whether the inverter remembers the frequency or is reset during the stop, P0.23 it is related to the stop, not related to the memory leak, please pay attention to it in the application.

2: FIV
3: FIC
The V 800 panel provides two analog input terminals (FIV, FIC). Of them, FIV is a voltage input from 0 V to 10 V , FIC is a voltage input from 0 V to 10 V , and can also be used for 420 mA current input, FIV, FIC input voltage values, the corresponding relationship with the target frequency, users they are free to choose. The V 800 inverter provides 5 sets of correlation curves, three groups of curves for linear relationship (2-point correlation), three groups of curves for linear relationship (4-point correlation), the user can set the values in P4 and C6 group of function codes.

The function code P4.33 is used to set the bidirectional analog input FIV - FIC, respectively to select one of the five groups of curves, see the descriptions of the function codes of groups P4, C6.
4: By the rotary knob on panel
5: The given pulse frequency (S3) is connected through the terminal pulse input. Impulse signal with specifications: voltage range $9 \mathrm{~V}-30 \mathrm{~V}$ and frequency range from 0 kHz to 100 kHz . The input pulse can only be entered from the multi-function input terminals S3.
Terminal S3 and the corresponding parameter setting are P5.28-P5.31. The linear relationship between the corresponding setting of $100 \%$ input pulses, refers to the relative maximum frequency of P0.12 percent.
6: More instructions for selection and other instructions of operation mode: by different combination, select the speed through digital input X, V 800 allows to set 4 multi-speed instruction terminals and select 16 states of these terminals. Through the function code of the PC group, select the code corresponding to any 16 -fold instruction. The multiple instruction refers to the percentage of the maximum frequency P0.12.
The selection of the function of the input terminal $S$ as well as the selection of the terminal must be made in group P5.

## 7: Simple PLC

If the frequency source is simple PLC mode, the inverter frequency source can run between any frequency source from 1 to 16 , the delay time is from 1 to 16 frequency instructions, and their respective acceleration/deceleration times can also be set by the user. Specific content may relate to a PC group.

8: PID
Select the PID output control process as the operating frequency.
In practice, closed-loop control technology, such as constant pressure control, closed-loop constant voltage control, etc., is more commonly used. To use the PID as a frequency source, you must set the PID-related parameters in the PA group.
9: Communication The main source of frequency is given by the equipment for communication. The V 800 supports these communication methods via RS 485.

| P0.05 | Select the auxiliary frequency source $Y$ |  | Default | 00 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting value | 0 | Digital setting (P0.10 preset frequency, can change over UP / DOWN) |  |
|  |  | 1 | Digital setting (P0.10 preset frequency, can change over UP / DOWN) |  |
|  |  | 2 | FIV |  |
|  |  | 3 | FIC |  |
|  |  | 4 | Reserved |  |
|  |  | 5 | Impulse adjustment (S3), option |  |
|  |  | 6 | Multiple instructions |  |
|  |  | 7 | PLC |  |
|  |  | 8 | PID |  |
|  |  | 9 | Communication interface |  |

The auxiliary frequency source with the frequency for a given channel as independent (e.g. $X$ and $Y$ switching frequency source selection), its use and the main frequency source with $X$ and the methods used can be found in the P0.03 related instructions.
When the auxiliary frequency source is used as the superposition of a given source (i.e. selecting the source frequency with $X+Y, X$ to $X+Y$ or $Y$ to $X+Y$ ), attention should be paid to the following:

1) If the auxiliary frequency source is for digital timing and the preset frequency (PO
is disabled, the user can adjust the setting using the $\uparrow, \downarrow$ (or UP and DOWN multifunctional input terminals) directly based on that frequency adjustment.
2) If the auxiliary power source is for a given analog input (FIV, FIC) or a given input pulse, $100 \%$ of the input setting corresponding to the auxiliary frequency source range can be set using P0.06 and P0.07.
3) If the frequency source is a pulse input similar to the analogue. Tip: The selection of the auxiliary frequency source and the main source of frequency $\mathrm{X}, \mathrm{Y}$ cannot be set to the same channel, namely P0.04 and P0.05 cannot be set to the same value, otherwise it will confuse.

| P0.06 | Select the range of auxiliary <br> frequency source $Y$ |  | Default | 00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting value | 0 | Considering to the maximum frequency |  |  |
|  | Considering to the maximum frequency of $X$ <br> source |  |  |  |  |
| Extension of the auxiliary <br> power source $Y$ | Default | 00 |  |  |  |
|  | Setting value |  | $0 \%-150 \%$ |  |  |

When selecting the Frequency supply frequency source (PO.03 set to 1,3 or 4 ), these two parameters are used to determine the range of the auxiliary power source setting. P0.05 is used to determine the range of the auxiliary frequency source of object, the choice with respect to the maximum frequency may also be relative to the frequency of the source $X$. If the selection is based on the main source of frequency, the range of the secondary frequency source will change as the main frequency $X$.

| P0.08 | Acceleration time 1 | Default |  |
| :---: | :---: | :---: | :--- |
|  | Setting range | Depends on the model |  |
| P0.09 | Deceleration time 1 | $0.00 \mathrm{~s}-65000 \mathrm{~s}$ |  |
|  | Setting range | Default | Depends on the model |
|  | $0.00 \mathrm{~s}-65000 \mathrm{~s}$ |  |  |

The acceleration time refers to the zero-speed inverter, the deceleration time required for the reference frequency (setting PO.24).
The deceleration time refers to the inverter at the reference frequency (setting P0.24), the deceleration to the required zero frequency.

| P0.10 | Default frequency | Default | 50.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 - maximum frequency (P0.12) |  |

If the "digital" or "UP / DOWN" terminal is set to the frequency source selection, the function code value is the frequency of the initial digital inverter setting value.

| P0.11 | Direction of rotation |  | Default | 00 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | The same direction |  |
|  |  | 1 | Opposite direction |  |

When changing the function code, you do not need to change the electrical connection of the motor to change the direction of rotation, its effect is equivalent to the setting of the electrical device ( $U, V, W$ ) of any two wires for the direction of rotation of the motor. Tip: after initialization, the original motor parameters for the rotation direction are restored. Pay attention to the tuning system, which is forbidden to change the direction of the engine.

| P0.12 | Maximum frequency | Default | 50.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | $50.00 \mathrm{~Hz}-3200.00 \mathrm{~Hz}$ |  |

In analogue and pulse input (S3), command time, etc., as a source of frequency $100.0 \%$ relative to the P0.10 calibration.
The maximum frequency output can reach 3200 Hz , the frequency resolution instructions and the input frequency range refer to the standard, they can be set via P0.22.
When P0.22 is set to value 1 , the frequency resolution is 0.1 Hz , the setting range P 0.10 is 50.0 Hz - 320.0 Hz ;

When P0.22 is set to value 2 , a frequency resolution of 0.01 Hz , the setting range P 0.10 is 50.00 Hz - 3200.00 Hz ;

| P0.13 | The upper limit of the frequency source |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Setting P0.12 |  |
|  |  | 1 | FIV |  |
|  |  | 2 | FIC |  |
|  |  | 3 | Reserved |  |
|  |  | 4 | Impulse setting |  |
|  |  | 5 | Setting via the communication input |  |

Defines the upper limit of the frequency source, which may be the upper limit frequency according to the setting (P0.12), as well as the analogue setting. When was limited by the
analog input frequency , the corresponding analog input corresponds to $100 \%$ of the P012 setting.
For example, in the case of control the winding in order to avoid tearing of the material when the phenomenon "ride" occurs, an analog frequency limiting may be used when the inverter is running at the upper limit frequency.

| P0.14 | The upper limit of the <br> frequency | Default | 50.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | Bottom frequency limit P0.16 - maximum frequency |  |
|  | The upper limit of the <br> frequency - shift | Default | 0.00 Hz |
|  | Setting range | 0.0 .00 Hz - maximum frequency P0.12 |  |

When the upper limit for the analog or IMPULSE frequency setting is set, P0.13 is the shift of set value, overrides the offset frequency and sets the upper limit values of the P012 frequency, it is the final limit value.

| P0.16 | Bottom frequency limit | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - Upper frequency limit |  |
|  |  |  |  |

The instruction for frequency in P0.16 sets the lower limit of the frequency, the inverter can stop and run at a lower frequency or set a zero speed, its operating mode can be set in P8.14 (the set frequency is lower than the lower frequency limit in the operating mode).

| P0.17 | Carrier frequency | Default | According to the <br> model |
| :---: | :---: | :---: | :---: |
|  | Setting range | $1 \mathrm{kHz}-16.0 \mathrm{kHz}$ |  |

This function sets the carrier frequency of the inverter. By adjusting the carrier frequency you can reduce electrical noise, avoid the resonance point of the mechanical system and reduce the interference caused by the inverter.
When the carrier frequency is low, the output current of the higher harmonic component increases, the loss and temperature of the motor increases.
If the carrier frequency is higher, the motor loss decreases, the motor temperature decreases, but the inverter's loss rises, the inverter temperature increases, the interference increases.

Setting the carrier frequency will affect the performance of the following:

| Carrier frequency | low -> high |
| :---: | :---: |
| Motor noise | high -> low |
| Output current | bad -> good |
| Motor temperature | high --> low |
| Inverter temperature | low --> high |
| Electrical leak | low -> high |
| The rate of foreign interference | low -> high |

For other power to the inverter, the factory setting of the carrier frequency is different. Although the user may adjust it as necessary, attention must be paid to the following: if the carrier frequency is set to a higher value than the factory setting, it will increase the inverter temperature, the user needs to reduce the frequency of the inverter, otherwise there is a risk of overheating.

| P0.18 | The influence of temperature on <br> the carrier frequency | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0: No <br> $1:$ Yes |  |

The temperature influences the setting of the carrier frequency, that is, the inverter detects a high temperature, reduces the carrier frequency automatically, and thus reduces the temperature increase of the inverter. When the temperature of heat sink is low, the carrier frequency returns to the set value. This feature can prevent malfunctions due to overheating of the inverter.

| P0.19 | Time increment for acceleration / <br> deceleration |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | 1 s |  |
|  |  | 1 | 0.1 s |  |
|  |  | 0.01 s |  |  |

To meet the needs of all kinds of requirements, V 800 offers three increments of time units: 1 second, 0.1 second and 0.01 seconds.
Warning: modifying the function parameters, four groups of decimal numbers, will change the deceleration time corresponding to the change in time. Pay special attention to settings during the application.

| P0.21 | Frequency shift of auxiliary <br> frequency source for $X$ and $Y$ <br> operation | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - maximum frequency P0.12 |  |

This function code is valid only at the time of selection of the frequency source by supplemental calculation.

If the source of frequency in the complementary calculation P0.21 is the shifted frequency, the result of the complementary calculation is a composite frequency which is considered to be the target frequency.

| P0.22 | Frequency reference |  | Default | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 1 | 0.1 Hz |  |  |
|  |  | 2 | 0.01 Hz |  |  |

All parameters are used to determine the resolution of the function code assigned to the frequency.
With a frequency resolution of 0.1 Hz , the maximum output frequency V 800 can reach 320 Hz and at a frequency resolution of 0.01 Hz , the maximum output frequency is 3200.00

Warning: If you modify the parameter P0.22, everything related to the frequency parameters will change, i.e., the corresponding frequency values change, pay special attention to applications.

| P0.23 | Permanent digital frequency setting <br> on power-on | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0 | No memory |
|  | 1 | Memory |  |

The function of source frequency for the digital signal is effective only when it is set.
"No memory" refers to the inverter after a pause, the digital frequency values return to the value of parameter P0.10 (preset frequency), press the $\mathbf{\Delta}, \boldsymbol{\nabla}$ or the signal at UP and DOWN to adjust the frequency setting.
"Memory" refers to the inverter after a pause, the frequency setting will remain as before the pause, with $\mathbf{\Delta}, \boldsymbol{\nabla}$ or the signal at UP and DOWN to adjust the frequency setting.

| P0.24 | Basic frequency during <br> acceleration / deceleration |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Maximum frequency (P0.12) |  |
|  |  | 1 | Set frequency |  |
|  |  | 100 Hz |  |  |

The acceleration / deceleration time refers to the frequency from zero to the value set by parameter PO.24.
When P024 is set to 1 , the deceleration time is associated with the set frequency, if the frequency setting often changes, the motor acceleration is variable, pay attention to the application.

| P0.25 | Base frequency changed via <br> UP/DOWN while running |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Running frequency |  |
|  |  | 1 | Set frequency |  |

This parameter is only valid if the frequency source is set digitally. Use the $\mathbf{\Lambda}, \boldsymbol{V}$ or signal buttons on UP and DOWN to select how the frequency correction is set, the target frequency is based on the operating frequency, increasing or decreasing, or the basic setting. Two sets of differences are used for inverters in the deceleration process, namely, if the inverter is running and the frequency is not set at the same time, the difference selection parameter is very large.

| P0.26 | Command binding to frequency source |  | Default | 000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | ..X: | Binding operation panel command to frequency source |  |
|  |  | 0 | No binding |  |
|  |  | 1 | Frequency source by digital setting |  |
|  |  | 2 | FIV |  |
|  |  | 3 | FIC |  |
|  |  | 4 | Reserved |  |
|  |  | 5 | Impulse setting (S3), option |  |
|  |  | 6 | Multiple instruction |  |
|  |  | 7 | PLC |  |
|  |  | 8 | PID |  |
|  |  | 9 | Communication setting |  |
|  |  | .X.: | Binding operation panel command to frequency source ( $0-9$, the same as units) |  |
|  |  | X..: | Binding operation panel command to frequency source ( $0-9$, the same as units) |  |

It is used to link three running command sources with nine frequency sources, making it easier to implement sync switching.

For detailed information about the frequency sources, see P0.03 (selection of the main frequency source X ). Different sources of running commands can be tied to the same frequency source.
If the master source has a linked frequency source and when the frequency source process is active, the command source set in P003 to P007 is no longer effective.

| P0.27 | Communication expansion card <br> type | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | MODBUS communication card |  |

## Group P1: Start / Stop Control

| P1.00 | Start mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Direct start |  |
|  |  | 1 | Re-start with speed tracking |  |
|  |  | 2 | Pre-excitation (asynchronous motor) |  |

## 0: Direct start

If the $D C$ braking time is set to 0 , the $A C$ motor starts running at the startup frequency. If the $D C$ braking time is not 0 , the $A C$ unit performs DC-braking first and then starts running at the startup frequency. It is used in applications with low inertia when the motor is likely to rotate at startup.

## 1: Re-start with speed tracking

The drive of the AC unit first evaluates the speed and direction of rotation and then starts at the detected frequency. Such a smooth start does not affect the rotating engine. Applies to a re-start with a short power outage at high inertia load. To ensure restarting with speed-tracking, set the motor parameters in P2 correctly.

## 2: Pre-excitation (asynchronous motor)

Applies only to asynchronous motors and is used for motors with built-in magnetic fields. For these motors, see the current and time setting in parameters P1.05 and P1.06. If the pre-excitation time is set to 0 seconds, the unit will cancel the pre-excitation and start at the startup frequency. If the pre-excitations not set to 0 seconds, the AC motor will be preexcitated before starting to improve the dynamic response of the engine.

| P1.01 | Speed tracking mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | From stop frequency |  |
|  |  | 1 | From zero speed |  |
|  |  | 2 | From the maximum frequency |  |

To complete the speed tracking process in the shortest possible time, select the correct mode in which the AC drive monitors the motor speed.
0 : From stop frequency.
This is the common selected mode.
1: From zero speed.
It is used to re-start after a long power failure.
2: From the maximum frequency.
It is used to control power generators.

| P1.02 | Rotation tracking speed | Default | 20 |
| :---: | :---: | :---: | :---: |
|  | Setting range | $1-100$ |  |

In the restart speed tracking mode, select the speed of the rotation tracking. The higher the value, the more frequent the tracking is. However, a too large setting value can cause unreliable tracking.

| P1.03 | Starting frequency | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.00 \mathrm{~Hz}-10.00 \mathrm{~Hz}$ |  |
| P1.04 | Startup frequency holding time | Default | 0.0 s |
|  | Setting range | $0.0 \mathrm{~s}-100.0 \mathrm{~s}$ |  |

To ensure the torque of AC unit at startup, set the correct starting frequency. In addition, to use excitation when starting the engine, the trigger frequency must be maintained for some time. The trigger frequency (P1.03) is not limited by the lower frequency limit. If the set target frequency is lower than the trigger frequency, the AC drive will not start and will remain in standby mode.

During switching between forward and reverse, the retention time of the start frequency is blocked. The retention time is not included in the acceleration time but is included in the runtime of the single PLC.

## Example 1:

P0.04 $=0 . \quad$ The source of the frequency is a digital setting.
$\mathrm{P} 0.10=2.00 \mathrm{~Hz}$. The digitally set frequency is 2.00 Hz .
$\mathrm{P} 1.03=5.00 \mathrm{~Hz}$. The starting frequency is 5.00 Hz .
P1.04 = 2.0 s . The hold time of frequency is 2.0 s .
In this example, the AC drive is in standby mode and the output frequency is 0.00 Hz .

## Example 2:

P0.04 $=0 . \quad$ The source of the frequency is a digital setting.
$\mathrm{PO} 0.10=10.00 \mathrm{~Hz}$. The digitally set frequency is 10.00 Hz .
$\mathrm{P} 1.03=5.00 \mathrm{~Hz}$ The starting frequency is 5.00 Hz .
$\mathrm{P} 1.04=2.0 \mathrm{~s} . \quad$ The hold time of frequency is je 2.0s.
In this example, the AC drive accelerates to 5.00 Hz and then accelerates to a set frequency of 10.00 Hz for 2 seconds.

| P1.05 | Startup DC braking time/Pre- excited <br> time | Default | $0 \%$ |
| :---: | :---: | :---: | :---: |
|  | Startup DC braking current / Pre- <br> excited current | Default | 0.0 s |
|  | Setting range | $0 \%-100 \%$ |  |

The start of DC brakes is generally used during re-start of AC drive after motor stop. The pre-excitation is used to create a magnetic field for the asynchronous motor before starting to improve its sensitivity.
Starting DC braking is only possible for direct start. In this case, the AC unit performs DCbraking with the starting brake DC current set. After the DC brake time has elapsed, the AC drive will start. If the initial DC braking time is set to 0 , the $A C$ motor will start immediately without DC braking. The greater the DC braking current, the greater the braking force.
If the pre-excitation is triggered before starting, the AC motor generates a magnetic field based on the set excited current. After the pre-excitation time has elapsed, the AC drive will start. If the pre-excitation time is set to 0 , the $A C$ motor will start immediately without pre-excitation. The start brake DC current or pre-excitation current is a percentage relative to the base value.
If the rated motor current is less than or equal to $80 \%$ of the rated current of the inverter, the rated value is the rated motor current. If the rated motor current is greater than $80 \%$ of the rated current of the inverter, the base value is $80 \%$ of the rated current of the inverter.

| P1.07 | Acceleration/ Deceleration <br> mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Linear acceleration / deceleration |  |
|  |  | 1 | S-curve acceleration / deceleration A |  |
|  |  | 2 | S-curve acceleration / deceleration B |  |

Used to set the frequency change mode during the frequency inverter startup and stop process.
0: Linear acceleration / deceleration
The output frequency increases or decreases linearly. The V 800 provides four sets of acceleration / deceleration times, which can be selected using P5.00 to P5.08.
1: S-curve acceleration / deceleration A
The output frequency increases or decreases according to curve S. The S-curve provides a soft start or stop in applications such as lifts, conveyor belts etc. Function codes P1.08 and P1.09 determine the ratio of acceleration time and deceleration of the start and end phases of the S-curve.
2: S-curve acceleration / deceleration B
In this curve, the rated motor frequency is always the point of inflection. This mode is commonly used in applications where acceleration / deceleration is required at a speed higher than the rated frequency.
If the set frequency is higher than the rated frequency, the acceleration / deceleration time is:

$$
t=\left\{\frac{4 f}{9 f_{b}}+\frac{5}{9}\right\} * T
$$

In the formula " $f$ " is the set frequency, " $f_{b}$ " is the rated motor frequency, and " $T$ " is the acceleration time from 0 Hz to the nominal frequency " $\mathrm{f}_{\mathrm{b}}$ ".


Figure 4-1 S-curve acceleration / deceleration B

| P1.08 | Time portion of the S- <br> curve start phase | Default | $30.0 \%$ |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%-(100.0 \%-$ P1.09) |  |
| P1.09 | Time portion of the S- <br> curve end phase | Default | $30.0 \%$ |
|  | Setting range | $0.0 \%-(100.0 \%-$ P1.08) |  |

These two parameters define the start and end times of the acceleration / deceleration of the S-curve type A. They must meet this requirement: P1.08 + P1.09S 100,0\%.

In Figure 4-2, t 1 is the time defined in P1.08, in which the output frequency slope gradually increases. t 2 is the time defined in parameters P1.09, in which the output frequency slope gradually decreases to 0 . Between time t 1 and t 2 , the slope of the change of the output frequency remains unchanged, so the acceleration / deceleration is linear.


Figure 4-2 S-curve acceleration / deceleration A

| P1.10 | STOP mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Decelerate to stop |  |
|  |  | 1 | Coast to stop |  |

## 0 : Decelerate to stop

After the stop command is issued, the AC unit reduces the output frequency to the deceleration time and stops the motor when the frequency drops to zero.
1: Stop
After the stop command is issued, the AC unit immediately stops the motor. The motor rotates inertia and gradually stops.

| P1.11 | Initial frequency of stop <br> DC braking | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - Maximum frequency |  |
| P1.12 | Waiting time of stop DC <br> braking | Default | 0.0 s |
|  | Setting range | $0.0 \mathrm{~s}-36.0 \mathrm{~s}$ |  |
| P1.13 | Braking DC current at stop | Default | $0 \%$ |
|  | Setting range | $0 \% \sim 100 \%$ |  |
| P1.14 | DC braking time | Default | 0.00 s |
|  | Setting range | $0.0 \mathrm{~s} \sim 36.0 \mathrm{~s}$ |  |

P1.11 (Initial frequency of stop DC braking)
During the deceleration until the stop, the AC unit starts DC braking when the running frequency is lower than the set value P1.11.
P1.12 (Waiting time of stop DC braking)
When the running frequency decreases to the initial stopping frequency of the DC braking, the $A C$ unit stops the output for a certain period of time and then starts DC braking. This prevents errors such as an excessive current caused by high-speed DC braking.
P1.13 (Braking DC current at stop)
This parameter specifies the output current for DC braking and is given as a percentage of the base value. If the rated motor current is less than or equal to $80 \%$ of the rated current of the $A C$ unit, the rated value is the rated motor current. If the rated motor current is greater than $80 \%$ of the rated current of the AC unit, the base value is $80 \%$ of the rated current of the AC inverter.
P1.14 (DC braking time)
This parameter specifies the duration of braking with DC current. If set to 0 , the DC braking will be disabled. The DC braking procedure is illustrated in the following figure.


Figure 4-3: DC braking procedure

| P1.15 | Braking rate | Default | $100 \%$ |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0-100 \%$ |  |

Applies only to an AC motor with an internal brake unit and is used to adjust the braking unit performance ratio. The greater the value of this parameter, the better the braking result. However, too much value causes a large AC voltage fluctuation during the braking process.

## Group P2: Motor parameters

| P2.00 | Motor type selection | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0: Common asynchronous motor <br> 1: Variable frequency asynchronous motor |  |
| P2.01 | Rated motor power | Default | Depends on the model |
|  | Setting range | 0.1 kW to 500.0 kW |  |
| P2.02 | Rated motor voltage | Default | Depends on the model |
|  | Setting range | $1 \mathrm{~V}-2000 \mathrm{~V}$ |  |
| P2.03 | Rated motor current | Default | Depends on the model |
|  | Setting range | 0.01 A - 855.35 A |  |
| P2.04 | Rated motor frequency | Default | Depends on the model |
|  | Setting range | 0.01 Hz - Maximum frequency |  |
| P2.05 | Rated motor speed | Default | Depends on the model |
|  | Setting range | 1 rpm ~ 65535 rpm |  |


| P2.06 | Stator resistance (asynchronous motor) | Default | Depends on the model |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.001 \Omega-30.000 \Omega$ |  |
| P2.07 | Rotor resistance (asynchronous motor) | Default | Depends on the model |
|  | Setting range | 0.001 $\Omega-65.535 \Omega$ |  |
| P2.08 | Leakage inductive reactance (asynchronous motor) | Default | Depends on the model |
|  | Setting range | $0.01 \mathrm{mH} \sim 655.35 \mathrm{mH}$ |  |
| P2.09 | Mutual induction (asynchronous motor) | Default | Depends on the model |
|  | Setting range | $0.1 \mathrm{mH} \sim 6553.5 \mathrm{mH}$ |  |
| P2.10 | Motor current without load (asynchronous motor) | Default | Depends on the model |
|  | Setting range | 0.01 A - P2.03 |  |

Set the parameters according to the motor nameplate, regardless of whether the V/F control or vector control is selected. To achieve better V/F power or vector control, auto tuning is required. The accuracy of automatic tuning of the motor depends on the correct setting of parameters according to the engine label.

Parameters P2.06 to P2.10 are for asynchronous motor.

P2.06 - P2.10 parameters are ordinary unavailable on the motor's nameplate and are obtained by means of inverter's auto-tuning. Asynchronous motor's stationary auto-tuning can obtain only three parameters, from P2.06 to P2.08. Asynchronous motor's dynamic auto-tuning can obtain besides all the parameters in P2.06 to P2.10, and can also obtain encoder phase sequence and current loop PI.
Each time "Rated motor power" (P2.01) or "Rated motor voltage" (P2.02) is changed, the AC drive automatically restores values of P2.06 to P2.10 to the parameter setting for the common standard $Y$ series asynchronous motor.
If it is impossible to perform asynchronous motor's stationary autotuning manually input the values of these parameters according to data provided by the motor manufacturer.

P2.11-P2.36 - reserved.

| P2.37 | Auto-tuning selection |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | No auto-tuning |  |
|  |  | 1 | Asynchronous motor - static auto-tuning |  |
|  |  | 2 | Asynchronous motor - complete auto-tuning |  |

0 : Automatic tuning is disabled.
1: Asynchronous motor - static auto-tuning
Applies to situations where complete automatic tuning cannot be performed because the asynchronous motor cannot easily be disconnected from the load.
Before performing static automatic tuning, first set the motor type and motor nameplate parameters correctly in parameters P2.00-P2.05. The AC unit detects static auto-tuning three parameters P2.06 to P2.08. Activity description: set this parameter to 1 and press RUN. Then the AC drive starts static auto-tuning.
2: Asynchronous motor - complete auto-tuning
To perform this type of automatic tuning, make sure the motor is disconnected from the load. During the full automatic adjustment process, the static automatic tuning is first performed by the AC inverter and then accelerated to $80 \%$ of the rated motor frequency within the acceleration time set in P0.08. The motor runs for some time and then deceleration to stop according to the deceleration time set in P0.09. Set this parameter to 2 and press RUN. Then the inverter starts full automatic tuning.

NOTE: auto-tuning of the motor can only be done in the control panel mode.

## Group P3: Vector Control Parameters

P3 group code function applies only to vector control, V/F control is blocked.

| P3.00 | Linear constant 1 | Default | 30 |
| :---: | :---: | :---: | :---: |
|  | Setting range | $1-100$ |  |
| P3.01 | Integration constant 1 | Default | 0.50 s |
|  | Setting range | $0.01 \mathrm{~s}-10.00 \mathrm{~s}$ |  |
| P3.02 | Frequency of switching 1 | Default | 5.00 Hz |
|  | Setting range | $0.0-$ P3.05 |  |
| P3.03 | Linear constant 2 | Default | 20 |
|  | Setting range | $0-100$ |  |
|  | Integration constant 2 | Default | 11.00 s |
|  | Setting range | $0.01 \mathrm{~s}-10.00 \mathrm{~s}$ |  |


| P3.05 | Frequency of switching 2 | Default | 110.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | P3.02 - Maximum output frequency |  |

The response rate with PI parameters varies depending on the frequency of the AC inverter.
If the running frequency is less or equal to "Switch Frequency 1" (P3.02), the PI loop parameters are P3.00 and P3.01.
If the running frequency is equal to or greater than "Switching Frequency 2" (P3.05), the PI loop parameters are P3.03 and P3.04.
If the running frequency is between P3.02 and P3.05, the PI loop parameters are obtained from the linear switching between the two PI parameter groups as shown in Figure 4-4.


Figure 4-4: The relationship between running frequency and PI parameters

Characteristics of speed dynamic response in vector control can be set by linear amplification and integration time of the speed controller.
To get a faster system response, increase the linear constant (gain) and reduce the integration time. Remember, this can lead to system oscillation.
The recommended editing procedure is as follows:
If the factory setting does not meet your requirements, make the correct settings. First, increase the linear constant to ensure that the system does not oscillate and reduce the integration time to ensure that the system has a fast response and a small overrun.
Note: Incorrect setting of the PI parameter can cause too much over-speeding and overvoltage can occur.

| P3.06 | Vector control slip gain | Default | $100 \%$ |
| :---: | :---: | :---: | :---: |
|  | Setting range | $50 \%-200 \%$ |  |

For SFVC, it is used to adjust speed stability accuracy of the motor. When the motor with load runs at a very low speed, increase the value of this parameter; when the motor with load runs at a very large speed, decrease the value of this parameter.

| P3.07 | Time constant of filter of the loop | Default | 0.000 s |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.000 \mathrm{~s}-0.100 \mathrm{~s}$ |  |

In vector control mode, the output of the control loop is related to the torque current. This parameter is used for torque filtering. In general, it does not have to be set and the value can be increased in case of large speed fluctuations. In case of motor oscillation, decrease the value of this parameter correctly. If the value of this parameter is small, the output torque of the AC inverter may fluctuate considerably, but the response is fast.

| P3.08 | Zisk prebudenia | Štandardne | 64 |
| :---: | :---: | :---: | :---: |
|  | Rozsah nastavenia | $0-200$ |  |

During AC motor deceleration, excessive pre-excitation may prevent the bus voltage from increasing in order to avoid overvoltage. The greater the increase in pre-excitation, the better the limiting effect. If there is a overvoltage error during deceleration, increase the gain of pre-excitation. However, too much increase in excess pre-excitation may lead to an increase in output current. Therefore, in real applications, set this parameter to the correct value. Set the pre-excitation increment to 0 in low-inertia applications (bus voltage does not increase during deceleration) or where braking resistor is used.

| P3.09 | Torque upper limit source in speed control mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | P3.10 |  |
|  |  | 1 | FIV |  |
|  |  | 2 | FIC |  |
|  |  | 3 | Reserved |  |
|  |  | 4 | Pulse setting |  |
|  |  | 5 | Communication setting via RS 485 |  |
| P3.10 | Digital setting of torque upper limit in speed control mode |  | Default | 150.0\% |
|  | Setting range |  |  | 0.0-200.0\% |

In speed control mode, the maximum output torque of the inverter is limited by P3.09. If the upper torque limit is analog, pulse or set via the communication interface, $100 \%$ of the setting corresponds to P3.10 and $100 \%$ of the P3.10 corresponds to the rated torque of the inverter.

| P3.13 | Adjusting the linear excitation constant | Default | 2000 |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0-20000 |  |
| P3.14 | Adjusting the integration constant of excitation | Default | 1300 |
|  | Setting range | 0-20000 |  |
| P3.15 | Adjusting the linear constant of torque | Default | 2000 |
|  | Setting range | 0-20000 |  |
| P3.16 | Adjusting the integration constant of torque | Default | 1300 |
|  | Setting range | 0-20000 |  |
| P3.17 | Speed of integration loop | Default | 0 |
|  | Setting range | 0: disabled |  |
|  |  | 1: enabled |  |

These are parameters of the PI current loop for vector control. These parameters are obtained by "automatic complete tuning of the asynchronous motor", and do not need to be changed.
Note that too much PI increase of the current loop can lead to oscillation of the entire control loop. Therefore, if the current oscillations or torque fluctuations are large, manually reduce the linear or integration constant.
P3.18-P3.22 - reserved.

## Group P4: V/F Control Parameters

The V/F control mode is applicable for low-load applications (fan or pump) or applications where one inverter operates with multiple motors, or there is a large difference between inverter power and motor power.

| P4.00 | Setting the V/F curve |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Linear V/F curve |  |
|  |  | 1 | Multipoint V/F curve |  |
|  |  | 2 | Square V/F curve |  |
|  |  | 3 | 1.2-fold V/F curve |  |
|  |  | 4 | 1.4-fold V/F curve |  |
|  |  | 6 | 1.6-fold V/F curve |  |
|  |  | 8 | 1.8-fold V/F curve |  |
|  |  | 9 | Reserved |  |
|  |  | 10 | V/F complete separation |  |
|  |  | 11 | V/F half-section |  |

0 : Linear V/F curve
It is applicable to common constant torque load..
1: Multipoint V/F curve
It is applicable to special load such as dehydrator and centrifuge. Any such V/F curve can be obtained by setting parameters of P4.03 to P4.08
2: Square V/F curve
It is applicable to centrifugal loads such as fan and pump.
3-8: V/F curve between linear V/F and square V/F
10: V/F complete separation mode
In this mode, the output frequency and output voltage of the AC drive are independent.
The output frequency is determined by the frequency source, and the output voltage is determined by "Voltage source for V/F separation" (P4.13).
It is applicable to induction heating, inverse power supply and torque motor control.
11: V/F half-section mode
In this mode, $V$ and $F$ are linear and linear relationships can be set by parameter P 4.13 . The relationship between V and F is also related to the rated motor voltage and the rated motor frequency set in the P 2 group.

Assume that the voltage source input is X ( 0 to 100\%), the relationship between V and F is: $\mathrm{V} / \mathrm{F}=2 * \mathrm{X} *$ (Rated motor voltage)/ (Rated motor frequency)

| P4.01 | Increase of torque | Default | Depends on the model |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%-30 \%$ |  |
| P4.02 | Torque limitation | Default | 50.00 Hz |
|  | Setting range | 0.00 Hz - maximum output frequency |  |

To compensate for the low V/F torque frequency, you can increase the output voltage of the inverter at low frequency by adjusting the parameter P4.01. If the torque boost is set to too high, the motor may overheat and the inverter may suffer overcurrent. If the load is large and the motor torque is inadequate, increase the value of P4.01. If the load is small, lower the P4.01 value. If the parameter is set to 0.0 , the inverter will automatically increase the torque. In this case, the inverter automatically calculates the torque boost value based on motor parameters including the stator resistance. P4.02 specifies the frequency that limits the torque increase. Increasing the torque after exceeding this frequency is not possible, as shown in the following figure.


Figure 4-5: Manual increasing of torque
f 1 : limitation of the frequency of manual torque increase, fb : rated value of frequency during motor running

| P4.03 | Multi-point V/F frequency curve 1 (F1) | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 HZ-P4.05 |  |
| P4.04 | Multipoint V/F voltage curve 1 (V1) | Default | 0.0\% |
|  | Setting range | 0.0\%~100.0\% |  |
| P4.05 | Multi-point V/F frequency curve 2 (F2) | Default | 0.00 Hz |
|  | Setting range | P4.03-P4.07 |  |
| P4.06 | Multipoint V/F voltage curve 2 (V2) | Default | 0 |
|  | Setting range | 0.0\%~100.0\% |  |
| P4.07 | Multi-point V/F frequency curve 3 (F3) | Default | 0 |
|  | Setting range | P4.05 - rated motor frequency (P2.04) |  |
| P4.08 | Multipoint V/F voltage curve 3 (V3) | Default | 0.0\% |
|  | Setting range | 0.0\%~100.0\% |  |

These six parameters are used to define the multi-point V/F curve. The multi-point V/F curve is set based on the motor's load characteristic. The relationship between voltages and frequencies must meet: V1 < V2 < V3, F1 < F2 < F3. At low frequency, higher voltage may cause overheat or even burnt out of the motor and overcurrent stall or overcurrent protection of the inverter. Multipoint V/F curve setting is described in Figure 4-6.


Figure 4-6 V1-V3: 1st, 2nd and 3rd voltage; F1-F3: 1st, 2nd and 3rd frequencies in percent; Vb : rated motor voltage; Fb : rated motor frequency

| P4.09 | Constant slope compensation V/F | Default | $0.0 \%$ |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0 \% \sim 200.0 \%$ |  |

This parameter is valid for asynchronous motor only.
It can compensate the slope of speed the asynchronous motor rotation while increasing the load of the motor, stabilize the motor speed in the event of a change of load.
If this parameter is set to $100 \%$, it means that the compensation when the motor is in nominal load is the nominal slip of the motor. The nominal slip of the motor is automatically obtained by calculating the inverter based on the rated motor frequency and the nominal motor rotation in the F1 group.
When adjust the V/F slip compensation gain, generally, at rated load, if the motor rotational speed is different from the target speed, slightly adjust this parameter.

| P4.10 | V/F overexcitation | Default | 64 |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0-200$ |  |

When slowing down the frequency converter, excessive excitement may prevent increased bus voltage to prevent overvoltage. The greater the excitement, the better the result of the limitation.
Increase the pre-excitation if the inverter gets into overcurrent during deceleration. However, too much incrementing may result in an increase in output current. Set the value P4.09 to the correct value in the current applications.

Set the pre-excitation increment to 0 in applications where there is little inertia and the bus voltage does not increase during motor deceleration or where there is a braking resistor.

| P4.11 | V/F suppression of oscillation | Default | Depends on the <br> model |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0-100$ |  |

Set this parameter to a value as small as possible in the prerequisite of efficient oscillation suppression to avoid influence on V/F control.
Set this parameter to 0 if the motor has no oscillation. Increase the value properly only when the motor has obvious oscillation. The larger the value is the more obvious the oscillation suppression result will be. If the oscillation suppression function is activated, the correct motor current and idle current must be set. Otherwise, the V/F oscillation suppression effect will be inadequate.

| P4.13 | Voltage sour | separation | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Rozsah nastavenia | 0 | Digital setting (P4.14) |  |
|  |  | 1 | FIV |  |
|  |  | 2 | FIC |  |
|  |  | 3 | Reserved |  |
|  |  | 4 | Impulse setting (S3), option |  |
|  |  | 5 | Step - fixed speeds |  |
|  |  | 6 | Simple PLC |  |
|  |  | 7 | PID |  |
|  |  | 8 | The communication interface |  |
|  |  | 100\% corresponds to the rated motor voltage (P2.02) |  |  |
| P4.14 | Voltage rise time of V/F separation |  | Setting range | OV |
|  | Setting range |  | OV - rated motor voltage |  |

The separation of V/F is universally usable in applications such as induction heating, inverse power supply and torque control of the engine.
If V/F separated control is enabled, the output voltage can be set by function code P4.14 or by means of analog, multi-reference, simple PLC, PID or communication. If you set the output voltage by means of non-digital setting, $100 \%$ of the setting corresponds to the rated motor voltage. If a negative percentage is set, its absolute value is used as the effective value.

## 0: Digital setting (P4.14)

The output voltage is set directly by P4.14.
1: FIV, 2: FIC
The output voltage is set by Al terminals.
3: Reserved
4: Impulse setting (S3)
The output voltage is set by pulses of the terminal S3.
Pulse specification: voltage range 9-30 V, frequency range 0-100 kHz.
5: Multiple source
If a multiple voltage source is used, the parameters in the P4 and PC groups must be set to determine the correlation between the set signal and the set voltage.
$100.0 \%$ setting of multiple references in the FC group corresponds to the rated motor voltage.
6: Simple PLC
If the voltage source is a simple PLC mode to set the output voltage, the parameters in the FC group must be set.
7: PID
The output voltage is generated based on the closed loop PID. See the PID description in the PA group for details.
8: The communication interface
The output voltage is set by the host computer using the communication means.
The voltage source for the separate V/F is set in the same way as the frequency source. $100.0 \%$ of the settings in each mode corresponds to the rated motor voltage. If the value is negative, the absolute value is used.

| P4.15 | Voltage rise time of V/F separation | Default | 0.0 s |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \mathrm{~s}-1000.0 \mathrm{~s}$ |  |
| P4.16 | Voltage decline time of V/F <br> separation | Default | 0.0 s |
|  | Setting range | $0.0 \mathrm{~s}-1000.0 \mathrm{~s}$ |  |

P4.15 gives the time it takes to increase the output voltage from 0 V to the rated motor voltage, shown as time t1 in the following figure.
P4.16 gives the time it takes for the output voltage to drop from the nominal motor voltage to 0 V , displayed as time t2.


Figure 4-7: Voltage course at V/F separation

## Skupina P5: Vstupné terminály

The V 800 series has 6 multifunctional digital inputs (S3 can be used as a high-speed pulse input terminal) and two analog input terminals.

| P5.00 | FWD function selection | Default | 1 RUN forward (FWD) |
| :---: | :---: | :---: | :---: |
| P5.01 | REV function selection | Default | 2 Reverse RUN (REV) |
| P5.02 | S1 function selection | Default | 9 (RESET of the fault) |
| P5.03 | S2 function selection | Default | 12 (multiple terminal 1) |
| P5.04 | S3 function selection | Default | 13 (multiple terminal 2) |
| P5.05 | S4 function selection | Default | 14 (multiple terminal 3) |

The following table lists the features available for multifunctional input terminals. You can choose the following features:

| Val. | Function | Description |
| :---: | :---: | :--- |
| 0 | No function | Set 0 for reserved terminals to avoid malfunction. |
| 1 | RUN forward (FWD) | The terminal is used to control forward or reverse |
| RUN of the AC drive. |  |  |


| 16 | Terminal 1 for selecting acceleration / deceleration time | By combining the two states of these two terminals, a |
| :---: | :---: | :---: |
| 17 | Terminal 2 for selecting acceleration / deceleration time | can be set. |
| 18 | Switching frequency source | The terminal is used to switch and selection different frequency sources. Select the function code PO.O3 by frequency source. If two types of frequency source switching are set as the frequency source, the terminal is used to switch between the two frequency sources. |
| 19 | Reset via UP and DOWN (terminal, control panel) | If the frequency source is a digital setting, the terminal is used to reset the modification using the UP / DOWN function or the increment / decrease key on the control panel and returns the set frequency to P0.10. |
| 20 | Command source switchover terminal | If the source of the command is set to terminal control ( $\mathrm{P} 0.02=1$ ), this terminal is used to switch between terminal control and control via the control panel. If the command source is set to control over the communication interface (P0.02 = 1), this terminal is used to switch between the communication interface and the control panel. |
| 21 | Acceleration / deceleration disabled | Allows the inverter to keeps the current output frequency without being affected by external signals (except for the STOP command). |
| 22 | Pause of PID | PID is temporarily disabled. The inverter keeps the current frequency output without supporting the PID source setting. |
| 23 | Recovering the PLC status | The terminal is used to restore the PLC's original state when the PLC is restarted after stopping. |
| 24 | Swing pause | The inverter sends the central frequency and the frequency transfer function is paused. |
| 25 | Counter input | This terminal is used to count impulses. |
| 26 | Reset the counter | This terminal is used to reset the counter. |
| 27 | Length count input | This terminal is used to count the length. |
| 28 | Resetting the length | This terminal is used to reset the length |


| 29 | Torque control disabled | Torque control is disabled, speed is controlled. |
| :---: | :---: | :---: |
| 30 | Pulse input (allowed only for S3) | S3 is used for pulse input (option) |
| 31 | Reserved | Reserved |
| 32 | Immediate DC braking | After switching on this terminal, the inverter switches directly to the braking DC state. |
| 33 | Normal close (NC) input of external fault (via S1 | After activating the input, the inverter reports an E15 fault and stops the motor. |
| 34 | Changing the frequency is disabled | After the input is activated, the inverter will not respond to any frequency change request. |
| 35 | Reverse direction of PID | After activating the input, the PID rotation direction is set according to PA. 03. |
| 36 | Terminal for external STOP 1 | In the control panel mode, this terminal can be used to stop the drive, which corresponds to the STOP button on the control panel. |
| 37 | Terminal for command source switch 2 | It is used to switch between terminal control and control through the communication interface. If the source of command is the control via terminal, the system switches to control over the communication |
| 38 | Pause the PID integration | When the input is activated, the integration function is paused. Linear and differential control functions are allowed. |
| 39 | Switching between the main $X$ source and the preset frequency | After activating the input, the frequency source $X$ is replaced by the default frequency set in P010. |
| 40 | Switching between the $Y$ source and the preset frequency | When this terminal is active, the frequency source $Y$ is replaced by the preset frequency set in P010. |
| 43 | Switching PID parameters | If the PID parameters switchover performed by means of $X$ terminal (PA. $18=1$ ), the PID parameters are PA. 05 to PA. 07 when the terminal becomes invalid; the PID parameters PA. 15 to PA. 17 are used when this terminal becomes effective. |
| 44 | Reserved |  |
| 45 | Reserved |  |


| 46 | Switching - speed control <br> / torque control | This input allows switching between speed control <br> and torque control. When active, the inverter <br> switches to another control mode. Otherwise, the <br> inverter is in the mode set in C0.00. |
| :---: | :---: | :--- |
| 47 | STO | If the input is active, the inverter will stop in the <br> shortest possible time. During the stop process, the <br> current remains at the current upper limit. This <br> function serves to meet the requirement to stop the <br> drive in an emergency state. |
| 48 | Terminal for external <br> STOP 2 | Any control mode (control panel, terminal or <br> communication) can be used to stop the inverter. In <br> this case, the deceleration time is 4. |
| 49 | DC braking with delay | If the input is active, the inverter decelerates to the <br> initial DC stopping frequency by braking and then <br> switches to the braking DC state. |
| 50 | Reset the current <br> operating time | If the input is active, the actual runtime of the inverter <br> is erased. This feature must be supported by P8.42 <br> and P8.53. |

Supplementary Table 1: Description of Multipurpose Terminals.
The four multi-purpose terminals have 16 combinations of states corresponding to 16 values listed in the following table.

| K4 | K3 | K2 | K1 | Designation | Related parameter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | OFF | Reference 0 | PC. 00 |
| OFF | OFF | OFF | ON | Reference 1 | PC. 01 |
| OFF | OFF | ON | OFF | Reference 2 | PC. 02 |
| OFF | OFF | ON | ON | Reference 3 | PC. 03 |
| OFF | ON | OFF | OFF | Reference 4 | PC. 04 |
| OFF | ON | OFF | ON | Reference 5 | PC. 05 |
| OFF | ON | ON | OFF | Reference 6 | PC. 06 |
| OFF | ON | ON | ON | Reference 7 | PC. 07 |
| ON | OFF | OFF | OFF | Reference 8 | PC. 08 |
| ON | OFF | OFF | ON | Reference 9 | PC. 09 |
| ON | OFF | ON | OFF | Reference 10 | PC. 10 |
| ON | OFF | ON | ON | Reference 11 | PC. 11 |
| ON | ON | OFF | OFF | Reference 12 | PC. 12 |
| ON | ON | OFF | ON | Reference 13 | PC. 13 |
| ON | ON | ON | OFF | Reference 14 | PC. 14 |
| ON | ON | ON | ON | Reference 15 | PC. 15 |

If the frequency source is a multiple reference, the value of $100 \%$ of parameters PC. 00 to PC. 15 corresponds to the maximum frequency P012.
In addition to multi-speed operation, the multiple reference may be used as a source of PID setting or voltage source for V/F separation, which meets the requirements for switching the various set values.

DopInková tabulka 2: opis funkcií terminálu pri vol'be času zrýchlenia / spomalenia

| Terminal 2 | Terminal 1 | Choice of <br> acceleration/deceleration time | Related parameters |
| :---: | :---: | :---: | :---: |
| OFF | OFF | acceleration / deceleration time 1 | P0.08; P0.09 |
| OFF | ON | acceleration / deceleration time 2 | P8.03; P8.04 |
| ON | OFF | acceleration / deceleration time 3 | P8.05; P8.06 |
| ON | ON | acceleration / deceleration time 4 | P8.07; P8.08 |


| P5.10 | Filtering time X | Default | 0.010 s |
| :---: | :---: | :---: | :---: |
|  | Setting range |  | $0.000 \mathrm{~s}-1.000 \mathrm{~s}$ |

Used to set the S-terminal software filtering time. If the S-terminals are subject to interference and can cause a fault, increase the value of this parameter to increase the interference prevention capability.

| P5.11 | Command mode via terminal |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Two-wire mode 1 |  |
|  |  | 1 | Two-wire mode 2 |  |
|  |  | Three-wire mode 1 |  |  |
|  |  | 3 | Three-wire mode 2 |  |

This parameter defines an external terminal, controls four different inverter modes. 0 : Two-wire mode 1
1: this is the most commonly used mode. The positive and reverse operation of the motor is controlled by the $\mathrm{Xx}, \mathrm{Xy}$ terminals. The setting parameters are listed below:

| Terminal | Set value | Description |
| :---: | :---: | :---: |
| $\mathrm{Sx}_{\mathrm{x}}$ | 1 | RUN forward (FWD) |
| Sy | 2 | RUN reverse (REV) |

In that Sx, Sy, terminals S1 through S4, FWD, REV are multi-function input terminals, level controlled. Note: COM = GND


| K1 | K2 | Run Command |
| :---: | :---: | :---: |
| 0 | 0 | Stop |
| 1 | 0 | FWD |
| 0 | 1 | REV |
| 1 | 1 | Stop |

Figure 4-8: Setting the two-wire mode 1
1: Two-wire mode 2 - use this setting when the Sx terminal specifies the operation and the Sy terminal is set to run.

| Terminal | Set value | Description |
| :---: | :---: | :---: |
| Sx | 1 | RUN forward (FWD) |
| Sy | 2 | RUN reverse (REV) |

In that Sx, Sy, terminals S1 through S4, FWD, REV are multi-function input terminals, level controlled.


| K1 | K2 | Prikaz |
| :---: | :---: | :---: |
| 0 | 0 | Stop |
| 1 | 0 | FWD |
| 1 | 1 | REV |
| 0 | 1 | Stop |

Figure 4-9: Setting the two-wire mode 1

## 2: Three-wire mode 1:

In this mode, the Sn terminal allows RUN and direction is set by Sx and Sy terminals.
The settings parameters are below:

| Terminal | Set value | Description |
| :---: | :---: | :---: |
| Sx | 1 | CHOD vpred (FWD) |
| Sy | 2 | CHOD vzad (REV) |
| Sn | 3 | Trojvodičové riadenie |

To enable the forward and reverse engine control system via the Sx or Sy inputs, the Sn terminal must be on.

When stopping is required, the $S n$ signal must be disconnected. In that $S x, S y$ and Sn are terminals S 1 to S 4, FWD, REV are multi-function input terminals, $\mathrm{Sx}, \mathrm{Sy}$ are pulse controlled. Sn is level controlled.


Figure 4-10-1 Setting the three-wire mode 1

In Figure 4-10-1 means: SB1: stop button
SB2: Button Forward
SB3: Reverse button

## 3: Three-wire mode 2:

In this mode, Sn allows execution of the command. The run command is given by the Sx signal and the direction specifies the Sy signal. The settings parameters are below:

| Terminal | Set value | Description |
| :---: | :---: | :---: |
| $S x$ | 1 | RUN forward (FWD) |
| $S y$ | 2 | RUN reverse (REV) |
| $S n$ | 3 | Three-wire mode |

Sn input must be on. The $S x$ signal triggers the motor and the Sy signal controls the direction of rotation of the motor. To stop the engine, Sn must be disconnected. In that Sx , Sy and Sn the terminals S 1 to S 4 , FWD, REV are multifunctional input terminals, Sx is impulse controlled. $\mathrm{Sy}, \mathrm{Sn}$ are level-controlled.


| KB3 | Running <br> direction |
| :---: | :--- |
| 0 | Forward |
| 1 | Reverse |

Figure 4-10-2: Setting the three-wire mode 2

| P5.12 | Change value by terminals <br> UP/DOWN | Default | $1.00 \mathrm{~Hz} / \mathrm{s}$ |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.01 \mathrm{~Hz} / \mathrm{s}-65535 \mathrm{~Hz} / \mathrm{s}$ |  |

It is used to set the terminal UP / DOWN for setting the frequency. Frequency changes are in Hz /second. If P0.22 (Frequency reference resolution) is 2 , the setting range is 0.001 to $65535 \mathrm{~Hz} / \mathrm{s}$. If P0.22 is 1, the setting range is $0.01-655.35$ $\mathrm{Hz} / \mathrm{s}$.

| P5.13 | Fl curve 1 minimum input | Default | 0.00V |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00V-P5.15 |  |
| P5.14 | Corresponding setting of FI curve 1 minimum input | Default | 0.0\% |
|  | Setting range | -100.00\%~100.0\% |  |
| P5.15 | Fl curve 1 maximum input | Default | 10V |
|  | Setting range | P5.13-10.00V |  |
| P5.16 | Corresponding setting of FI curve 1 maximum input | Default | 100\% |
|  | Setting range | -100.00\%~100.0\% |  |
| P5.17 | Fl filter curve time 1 | Default | 0.10s |
|  | Setting range |  |  |

These parameters are used to define the relationship between the analog input voltage and the corresponding setting. When the analog input voltage exceeds the maximum value (P5.15), the maximum value of the analog voltage is calculated according to the "maximum input". If the analog input voltage is less than the set minimum input (P5.13), the value set in P5.34 (setting for Fl is less than the minimum input) is calculated according to the minimum input value or is $0.0 \%$.
When the analog input is a current input, the 20 mA current corresponds to a voltage of 5 V . The 4 mA current corresponds to a voltage of 1 V .
The Fl input filtering time is used to set the Fl software filtering time.

If the analog input is interrupted, increase the filtering time to stabilize the detected analog input.

However, increasing FI filtering time of curve 1 slows the analog detection response. Set this parameter correctly based on actual conditions.
In different applications, 100\% of the analog input corresponds to different nominal values. For details, see the application descriptions.
The following figure shows two typical examples of settings.


Corresponding set value
(frequency, torque)


Figure 4-11: The relationship between analog inputs and set values

| P5.18 | Fl curve 2 minimum input |  | Default | 0.00 V |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.00V-P5.20 |  |  |
| P5.19 | Corresponding setting of FI curve 2 min . input |  | Default | 0.0 \% |
|  | Setting range | -100.00\%~100.0\% |  |  |
| P5.20 | Fl curve 2 maximum input |  | Default | 10.00 V |
|  | Setting range | P5.18 |  |  |


| P5.21 | Corresponding setting of FI curve 2 max. input |  | Default | 100.0 \% |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | -100.00\% $100.0 \%$ |  |  |
| P5.22 | Fl filter curve time |  | Default | 0.10 s |
|  | Setting range | 0.00S-10.00s |  |  |
| P5.23 | Fl curve 3 minimum input |  | Default | -10.00 V |
|  | Setting range | -10.00V~P5.25 |  |  |
| P5.24 | Corresponding setting of FI curve 3 minimum input |  | Default | -100.0\% |
|  | Setting range | -100.00\% $100.0 \%$ |  |  |
| P5.25 | Fl curve 3 maximum input |  | Default | 10.00 V |
|  | Setting range | P5.18~10.00V |  |  |
| P5.26 | Corresponding setting of FI curve 3 min . input |  | Default | 100.0\% |
|  | Setting range | -100.00\% $100.0 \%$ |  |  |
| P5.27 | Fl filter curve time |  | Default | 0.10 s |
|  | Setting range | 0.00s~10.00s |  |  |

The FI 3 curve setting method and functions are similar to setting the FI 1 curve function.

| P5.28 | IMPULS minimum input | Default | 0.00 kHz |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.00 \mathrm{kHz} \sim$ P5.30 |  |
| P5.29 | Corresponding minimum input impulse setting | Default | 0.0 \% |
|  | Setting range | -100.00\% ${ }^{\text {~ }} 100.0 \%$ |  |
| P5.30 | IMPULS maximum input | Default | 50.00 kHz |
|  | Setting range | P5.28~50.00kHz |  |
| P5.31 | Corresponding maximum input impulse setting | Default | 100.0 \% |
|  | Setting range | -100.00\% ~ $100.0 \%$ |  |
| P5.32 | Filter time of impulse curve | Default | 0.10 s |
|  | Setting range | 0.00 s-10.00 s |  |

These parameters are used to set the relationship between pulse input S3 and the corresponding settings. Pulses can be input only with S3. The setting method of this function is similar to setting the FI 1 curve function. Refer to FI 1 curve description.

| P5.33 | Selection of FI curve |  | Default | 321 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | ..X | Selection of FIV curve |  |
|  |  | 1 | Curve 1 (2-point, see P5.13-P5.16) |  |
|  |  | 2 | Curve 2 (2-point, see P5.18-P5.21) |  |
|  |  | 3 | Curve 3 (2-point, see P5.23-P5.26) |  |
|  |  | 4 | Curve 4 (4-point, see C6.00~C6.07) |  |
|  |  | 5 | Curve 5 (4-point, see C6.08~C6.15) |  |
|  |  | . X . | Selection of FIC curve (1-5, the same as FIV) |  |
|  |  | X.. | Reserved |  |

The digits at the position of the units, tens and hundreds of this parameter are used to select the appropriate FIV/FIC curve. Each of the five curves can be selected for 2 analog inputs. Curve 1, Curve 2, and Curve 3 are 2-point curves to set in P5. Curve 4 and Curve 5 are both 4-point curves set in group C6.

The inverter VECTOR V800 provides two FI terminals as standard.

| P5.34 | Set the FI to less than the minimum input |  | Default | 000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | ..X | Set the FIV to less than the minimum input |  |
|  |  | 0 | Minimum value |  |
|  |  | 1 | 0.0\% |  |
|  |  | .X. | Set the FIC to less than the minimum input ( 0 1, the same as FIV) |  |
|  |  | X.. | Reserved |  |

This function code is used to determine the corresponding setting when the analog input voltage is less than the minimum value. Units, tens and hundreds of this function code corresponds the settings for FIV and FIC.
If the value of a certain digit is set to 0 and the analog input voltage is less than the minimum input, the corresponding minimum input setting (P5.14, P5.19, P5.24) is used. If the value of a certain digit is set to 1 and the analog input voltage is less than the minimum input, the corresponding value of this analog input is $0.0 \%$.

| P5.35 | X1 delay time |  | Default | 0.0 s |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \mathrm{~s}-3600.0 \mathrm{~s}$ |  |  |
| P5.36 | X2 delay time |  | Default | 0.0 s |
|  | Setting range | $0.0 \mathrm{~s}-3600.0 \mathrm{~s}$ |  |  |


| P5.37 | X3 delay time |  | Default | 0.0 s |
| :--- | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \mathrm{~s}-3600.0 \mathrm{~s}$ |  |  |

These parameters are used to set the delay time of the inverter when the terminal status is changed.
At present only FWD, REV and S1 support the delay function.

| P5.38 | Selecting the allowed S-mode 1 |  | Default | 00000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | .....X | FWD allowed mode |  |
|  |  | 0 | Positive logic |  |
|  |  | 1 | Negative logic |  |
|  |  | ...X. | REV allowed mode (0-1, the same as FWD) |  |
|  |  | ..X.. | S1 allowed mode (0-1, the same as FWD) |  |
|  |  | .X... | S2 allowed mode (0-1, the same as FWD) |  |
|  |  | X.... | S3 allowed mode (0-1, the same as FWD) |  |
| P5.39 | Selecting the allowed S-mode 2 |  | Default | Default |
|  | Setting range | . X | S4 valid mode |  |
|  |  | 0 | Positive logic |  |
|  |  | 1 | Negative logic |  |

These parameters are used to set the digital input terminal mode. Terminal $S$ is enabled when connected to GND and blocked when disconnected from GND.

## Group P6: Output Terminals

V 800 includes 1 standard multifunction analogue output connector FOV, 1 multifunction output relay output and M01 terminal (used for high-speed pulse output or open collector output).

| P6.00 | M01 output mode |  | Default | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-1$ | 1: Switch/break output |  |  |
| P6.01 | M01 Functions (output - open collector OC) |  | Default | 0 |  |
| P6.02 | Relay output function (RA-RB-RC) |  | Default | 2 |  |

These two parameters are used to select the functions of the five digital output terminals. RA-RB-RC are the relevant relay on the control board and on the add-on card. The output terminal functions are described in the following table.

Table 4-5 Output terminal functions.

| Value | Function | Description |
| :---: | :---: | :---: |
| 0 | No output | The terminal has no assigned function |
| 1 | Inverter in RUN mode | When the inverter is running and has an output frequency (may be zero), the output is ON |
| 2 | Fault (stop) | If the inverter has stopped due to an error, the output is ON |
| 3 | Detection of the FDT1 frequency level | See description P8.19 and P8.20. |
| 4 | Frequency achieved | See description P8.21. |
| 5 | Run at zero speed | If the inverter operates at output frequency 0 , the output is ON. If the inverter is stopped, the output is OFF. |
| 6 | Pre-warning of overloading the motor | The inverter decides whether the motor load exceeds the level of the pre-overload warning before activation of the protection. If the warning level is exceeded, the terminal output is ON. For motor overload parameters, see descriptions P9.00 to P9.02. |
| 7 | Pre-warning of overloading the inverter | The outputs are switched on for 10 seconds before the inverter overload protection action is performed. |
| 8 | Set counter value reached | The output is ON when the counter value reaches the value set in Pb .08 . |
| 9 | Required value of counter reached | The output is ON when the counter value reaches the value set in Pb .09 . |
| 10 | Length reached | The output is ON when the actual length exceeds the value set in Pb .05 . |
| 11 | The entire PLC cycle completed | When the PLC completes one cycle, the terminal outputs a 250 ms pulse signal |


| 12 | The cumulative operating time reached | If the cumulative runtime exceeds the time set in P8.17, the output is ON. |
| :---: | :---: | :---: |
| 13 | Limited frequency | If the set frequency exceeds the upper or lower frequency limit and the output frequency of the inverter reaches the upper or lower limit, the output is ON. |
| 14 | Limited torque | In torque control mode, if the output torque reaches the torque limit, the inverter enters the protection state and the output switches ON. |
| 15 | The inverter is ready to RUN | If the main circuit and the control circuit are stable and the inverter detects no fault and is ready for RUN, the output will be ON. |
| 16 | FIV > FIC | When the FIV input is greater than the FIC input, the output |
| 17 | The upper frequency limit reached | If the frequency of RUN mode reaches the upper limit, the output is ON . |
| 18 | The lower frequency limit reached | If the frequency of RUN mode reaches the lower limit, the output will turn ON. In the event of a stop, the output will switch off. |
| 19 | Under voltage | If the inverter is under voltage, the output will turn ON. |
| 20 | Communication setting | See the communication protocol. |
| 21 | Reserved | Reserved |
| 22 | Reserved | Reserved |
| 23 | Run at zero speed 2 | If the output frequency of the inverter is 0 , the output is ON . In the event of a stop, the output is still on. |
| 24 | Total time under voltage reached | If the cumulative turn on time of the inverter (P7.13) exceeds the value set in P8.16, the output is ON. |
| 25 | Detection of the FDT2 frequency level | See description P8.28 and P8.29. |
| 26 | Frequency 1 reached | See description P8.30 and P8.31. |
| 27 | Frequency 2 reached | See description P8.32 and P8.33. |


| 28 | Current 1 reached | See description P8.38 and P8.39. |
| :---: | :---: | :---: |
| 29 | Current 2 reached | See description P8.40 and P8.41. |
| 30 | Time reached | If the timing function (P8.42) is enabled, the output is ON when the actual running time of the inverter reaches the set time. |
| 31 | FIV entry limit exceeded | If the FIV input is greater than P9.46 (upper limit of the input voltage FIV) or lower than the value P9.45 (lower limit of the input voltage FIV), the output is ON. |
| 32 | Zero load | Load 0, output turns ON. |
| 33 | Reverse RUN | If the inverter is in REVERSE mode, the output will be |
| 34 | Zero current | See description P8.28 and P8.29. |
| 35 | Module temperature | If the heat sink temperature (P7.07) reaches the set module threshold (P8.47), the output is ON. |
| 36 | Exceeded current limit | See description P8.36 and P8.37. |
| 37 | Frequency lower limit reached | If the RUN frequency reaches the lower limit, the output is ON. During the stop, the output is still on. |
| 38 | Alarm | If a fault occurs in the inverter and the inverter will not continue, an alarm signal will switch on. |
| 39 | Reserved | Reserved |
| 40 | Actual running time reached | If the actual runtime exceeds P8.53, the output is ON. |

P6.03-P6.06 RESERVED

| P6.07 | FOV selection the function of output | Default | 0 |
| :---: | :---: | :---: | :---: |
| P6.08 | Reserved |  |  |

The FOV output range is $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$. The relationship between the ranges of pulse and analogue outputs and the corresponding functions is shown in the following table.

Table 4-6 Relationship between pulse and analog output ranges and corresponding functions.

| Value | Function | Range (corresponding to the range of pulses or <br> analog outputs $0.0 \%-100.0 \%$ ) |
| :---: | :---: | :--- |
| 0 | Frequency during RUN | 0 - maximum output frequency |
| 1 | Set frequency | 0 - maximum output frequency |
| 2 | Output current | $0-2$-multiple the rated value of current the motor |
| 3 | Output torque | $0-2$-multiple the rated value of torque the motor |
| 4 | Output power | $0-2$-multiple of the rated value of supply voltage |
| 5 | Output voltage | $0-1.2$-multiple of the rated value of voltage the <br> inverter |
| 6 | Impulse input | $0.01 \mathrm{kHz}-100.00 \mathrm{kHz}$ |
| 7 | FIV | $0 \mathrm{~V}-10 \mathrm{~V}$ |
| 8 | FIC | $0 \mathrm{~V}-10 \mathrm{~V}$ (or $0-20 \mathrm{~mA}$ ) |
| 9 | Reserved |  |
| 10 | Length | $0-$ maximum length set |
| 11 | Numbered value of <br> counter | $0-$ maximum set value of the counter |
| 12 | Communication setup | $0.0 \%-100.0 \%$ |
| 13 | Speed of engine <br> rotation | $0-$ the rotational speed corresponding to the <br> maximum output frequency |
| 14 | Output current | $0.0 \mathrm{~A}-1000.0 \mathrm{~A}$ |
| 15 | Output Voltage | $0.0 \mathrm{~V}-1000.0 \mathrm{~V}$ |


| P6.10 | FOV zero offset coefficient |  | Default | $0.0 \%$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $100.0 \%{ }^{\sim}+100.0 \%$ |  |  |
| P6.11 | FOV gain |  | Default | 1.00 |
|  | Setting range | $-10.00-+10.00$ |  |  |
| P6.12 | Reserved |  |  |  |
| P6.13 <br> to <br> P6.16 | Reserved |  |  |  |

These function codes are used to correct the shift of the zero of the analogue output and the output amplitude deviation. They can also be used to define the desired FOV curve. If "b" represents a zero shift, " $k$ " represents the gain, " $Y$ " represents the actual output and " X " represents the standard output, the actual output value is: $\mathrm{Y}=\mathrm{kX}+\mathrm{b}$.

The zero displacement coefficient of $100 \%$ FOV corresponds to 10 V (or 20 mA ). The standard output refers to a value corresponding to an analogue output of 0 to 10 V (or 0 to 20 mA ) without setting a zero shift or gain.

For example, if the analogue output is used as frequency of RUN and the output is expected to be 8 V at a maximum frequency of 3 V , the gain is set to -0.50 and the zero offset is set to $80 \%$.

| P6.17 | M01 time of delay |  | Default |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \mathrm{~s}-3600.0 \mathrm{~s}$ |  |  |
| P6.18 | RA-RB-RC time of delay | Default | 0.0 s |  |
|  | Setting range | $0.0 \mathrm{~s}-3600.0 \mathrm{~s}$ |  |  |

These parameters are used to set the delay of M01 output terminals, relay 1 from time of change to actual output.
P6.19 to P6.21: Reserved

| P6.22 | Selection of output terminal mode |  | Default | 00000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Units | M01 mode |  |
|  |  | 0 | Positive logic |  |
|  |  | 1 | Negative Logic |  |
|  |  | Tens | RA-RB-RC mode (0-1, the same as N101) |  |

Used to define logic of M01, RA, RB, RC output terminals.

0: Positive logic
The output terminal is active when it is connected to the GND, and is inactive when disconnected from the GND.
1: Negative Logic
The output terminal is inactive when it is connected to the GND, and is active when disconnected from the GND.

Group P7: Control panel and display

| P7.00 | Correction power factor |  | Default | 100.0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 |  | $0.0-200.0$ |

It can adjust the output power by changing parameter P7.00, (output power can be displayed helping with parameter D0.05)

| P7.01 | Selection of the function of the JOG key <br> Only valid for V800-4T0370 to 4T1600 models with two-row panel | 0:JOG button is disabled on DP6-G-3 panels <br> 1: Switching between panel control and external control (terminal command channel or communication channel) <br> 2: Switching between FORWARD and REVERSE <br> 3: Activation of FORWARD JOG <br> 4: BACKWARD JOG activation <br> 5: Activation of the STOP button on DP6-E-2 panels |
| :---: | :---: | :---: |


| P7.02 | STOP/RESET button |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | STOP/RESET key enabled only in operation <br> panel control |  |
|  | 1 | STOP/RESET key enabled in any operation <br> mode |  |  |




Once parameters are enabled, the parameters that can be displayed are visible to any state of the inverter.


| P7.06 | Load speed display <br> coefficient | Default | 1.0000 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range |  | $0,0001-6.5000$ |  |

This parameter serves to set the relation between the inverter output frequency and the load speed. For details, see P7.12.

| P7.07 | Teplota chladiča meniča | Štandardne |  |
| :---: | :---: | :---: | :---: |
|  | Rozsah nastavenia |  |  |

It is used to display of the input bipolar transistor (IGBT) temperature of the inverter and IGBT protection against overheating depending on the model.

| P7.08 | Temporary version of the <br> software | Default | Read only |
| :---: | :---: | :---: | :---: |
|  | Setting range |  |  |

It displays the temporary version of the control panel software.

| P7.09 | Total running time | Default | 0 hours |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range |  | 0 hours -65635 hours |  |

It shows the total running time of the inverter. If this value reaches the value set in P8.17, digital output (ON) will be switched on.

| P7.10 | Reserved |  | Default |  |
| :---: | :---: | :---: | :---: | :---: |
| P7.11 | Version of the software |  | Default |  |
|  | Setting range |  | control board software version |  |
| P7.12 | Number of decimal places to display load speed |  | Default | 0 |
|  | Setting range | 0 | 0 decimal places |  |
|  |  | 1 | 1 decimal place |  |
|  |  | 2 | 2 decimal places |  |
|  |  | 3 | 3 decimal places |  |

P7.12 is used to set the number of decimal places to display the loading speed. The following example explains how to calculate the loading speed:
Let's assume that P7.06 (coefficient of loading speed the display) is 2,000 and P7.12 is 2 ( 2 decimal places). If the drive frequency is 40.00 Hz , the load speed is $40.00 \times 2000=80.00$ (display of 2 decimal places).
If the inverter is in the STOP state, the loading speed is the speed corresponding to the set frequency, namely "set loading speed". If the frequency is set to 50.00 Hz , the loading speed in STOP state is $50.00 \times 2.000=100.00$ ( 2 decimal places) .

| P7.13 | Total time under voltage | Default | ------- |
| :---: | :---: | :---: | :---: |
|  | Setting range |  |  |
|  |  | 0 hours -65635 hours |  |

It is used to display the cumulative turn on time of the inverter. If the time reaches the set on time (P8.17), the digital output 24 will switch ON.

| P7.14 | Total electricity <br> consumption | Default | --- |
| :---: | :---: | :---: | :---: |
|  | Setting range |  | $0-65635 \mathrm{kWh}$ |

It is used to display the cumulative power consumption of the inverter.

## Group P8: Auxiliary functions

| P8.00 | Jog (JOG) frequency |  | Default | 2.00 Hz |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range |  | 0.00 Hz - maximum frequency |  |  |
| P8.01 | Jog acceleration (JOG) |  | Default | 20.0 s |  |
|  | Setting range | $0.0 \mathrm{~s}-6500.0 \mathrm{~s}$ |  |  |  |
| P8.02 | Jog deceleration (JOG) |  | Default | 20.0 s |  |
|  | $0.0 \mathrm{~s}-6500.0 \mathrm{~s}$ |  |  |  |  |

These parameters are used to define the set frequency and acceleration / deceleration time of the motor in JOG mode. The startup mode is "Direct start" $(P 1.00=0)$ and the stop mode is "Deceleration to stop" (P1.10 = 0).

| P8.03 | Acceleration time 2 | Default | According to the model |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 s-6500.0 s |  |
| P8.04 | Deceleration time 2 | Default | According to the model |
|  | Setting range | 0.0s-6500.0 s |  |
| P8.05 | Acceleration time 3 | Default | According to the model |
|  | Setting range | 0.0s-6500.0 s |  |
| P8.06 | Deceleration time 3 | Default | According to the model |
|  | Setting range | 0.0 s - 6500.0 s |  |
| P8.07 | Acceleration time 4 | Default | According to the model |
|  | Setting range | 0.0 s-6500.0 s |  |
| P8.08 | Deceleration time 4 | Default | According to the model |
|  | Setting range | 0.0 s - 6500.0 s |  |

The 800 provides a total of four sets of acceleration / deceleration times, that is, the previous three groups and the group defined in P0.08 and P0.09. The definitions of the
four groups are exactly the same. You can switch between these four acceleration / deceleration time groups by means of different combinations of S-terminal states. For more details, see P5.01 to P5.05.

| P8.09 | Jump frequency 1 | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - maximum frequency |  |
| P8.10 | Jump frequency 2 | Default | 0.00 Hz |
|  | Setting range | 0.00 Hz - maximum frequency |  |
| P8.11 | Amplitude of the jump frenwency | Default | 0.00 Hz |
|  | Setting range | 0.00 Hz - maximum frequency |  |

If the frequency in the frequency jump range is set, the current frequency is the jump frequency close to the set frequency. Setting the jump frequency helps avoid mechanical load resonance.
The V 800 provides two jumper frequencies. If both are set to 0 , the frequency jump function is off. The principle of jump frequencies and jump amplitude is illustrated in the following figure.


Figure 4-12: The principle of jump frequencies and amplitude

| P8.12 | $\begin{array}{c}\text { Dead zone time when changing } \\ \text { rotation }\end{array}$ |  | Default |
| :---: | :---: | :---: | :---: |$) 0.0 \mathrm{~s}$

It is used to set the time when the output is 0 Hz when changing the motor as shown in the following figure.


Figure 4-13: Forward / Reverse rotation

| P8.13 | Control of reverse |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | disabled |  |
|  |  | 1 | enabled |  |

Used to set whether the inverter allows reversing. For applications where reverse flow is disabled, set this parameter to 0 .

| P8.14 | Mode of operation when the set <br> frequency is lower than the lower limit |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | RUN at the lower frequency limit |  |
|  | Setting range | 1 | Stop |  |
|  |  | 2 | RUN at zero speed |  |

It is used to set the AC inverter mode when the set frequency is lower than the lower frequency limit. The inverter provides three operating modes to meet the requirements of various applications.

| P8.15 | Balance control |  | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.00 \mathrm{~Hz}-10.00 \mathrm{~Hz}$ |  |  |

This function is used to balance the work load distribution when multiple motors are used to drive the same load. The output frequency of the inverters decreases as the load is increased. You can reduce the working load of the motor under load by reducing the
output frequency for this motor and implement the load balancing between several motors.

| P8.16 | Limit of total turn-on time |  | Default | 0 hours |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-65000$ hod |  |  |

If the total turn on time (P7.13) reaches the value set in parameter P8.16, the corresponding M01 terminal outputs are ON, (P6.01 = 24).

| P8.17 | Total time of operation the inverter |  | Default | 0 hours |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-65000$ hours |  |  |

It is used to set the limit for the total running time of the inverter. If the total operating time (P7.09) reaches the value set in this parameter, the corresponding output terminals M01 are ON, (P6.01 = 40).

| P8.18 | The protection at start |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | disabled |  |
|  |  | 1 | enabled |  |

This parameter is used to set whether to enable security protection
If set to 1 , the inverter does not respond to the command triggered when switching on the inverter (for example, the input terminal is on before the voltage is connected). The inverter responds only after the startup command has been cancelled and re-started. In addition, the inverter does not respond to the issued command, which is valid after resetting errors in the inverter. Running protection can only be deactivated after cancelling the starting command.
In this way, this parameter is set to 1 , the motor can be protected from responding to the commands issued after the power is turned on or when an unexpected error is reset.

| P8.19 | Frequency detection value (FDT1) |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - maximum frequency |  |  |
| P8.20 | Hysteresis detection value (FDH) | Default | $5.0 \%$ |  |
|  | Setting range | $0.0 \%-100.0 \%$ (FDT1) |  |  |

If the operating frequency is higher than the frequency detection value, the corresponding M01 terminal is ON. If the running frequency is lower than P8.19, the output on the M01 terminals is cancelled.

These two parameters are used to set the output frequency detection value and hysteresis value when the output is cancelled. The value P8.20 is the percentage of hysteresis frequency from the frequency value (P8.19). The FDT function is shown in the following figure.


Time ( t )
Obrázok 4-14: FDT úrovne

| P8.21 | Achieved range of frequency detection |  | Default |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%$ |  |

If the frequency of the inverter is running within a certain frequency range, the corresponding YO terminal is ON.
This parameter serves to set the range at which the output frequency is detected to achieve the set frequency. The value of this parameter is a percentage with respect to the maximum frequency. The reached range of detection is shown in the following figure.


Figure 4-15 Frequency detection range

| P8.22 | Jumping frequency during acceleration / <br> deceleration |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0: disabled <br> $1:$ enabled |  |  |

Used to determine if the jumping frequency is enabled during the acceleration / deceleration process.
If the jumping frequency during acceleration / deceleration is enabled and the running frequency is within the jumping frequency range, the actual running frequency exceeds the amplitude of the set jumping frequency (it increases directly from the lowest to the highest jumping frequency). The following figure shows a diagram when the jumping frequency is enabled during acceleration / deceleration.


Figure 4-16: Diagram when the jumping frequency is enabled during the acceleration / deceleration process

| P8.25 | Frequency switching point between acceleration time 1 and acceleration time 2 | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - maximum frequency |  |
| P8.26 | Frequency switching point between deceleration time 1 and deceleration time 2 | Default | 0.00 Hz |
|  | Setting range | 0.00 Hz - maximum frequency |  |

This function is enabled when the inverter selects an acceleration / deceleration time that is not enabled by switching the X terminal. It is used to select different acceleration / deceleration time groups based on the operating frequency range rather than the X terminal during the inverter running.
During acceleration, if the running frequency is less than P8.25, acceleration time is selected 2. If the running frequency is greater than P8.25, acceleration time 1 is selected. During deceleration, if the running frequency is less than P8.25, the deceleration time is 2. If the running frequency is greater than P8.25, the deceleration time is 1.


Figure 4-17: Toggle acceleration / deceleration time

| P8.27 | Terminal JOG preferred |  | Default |  |
| :--- | :--- | :---: | :---: | :---: |
|  | Setting range | 0 0: disabled 1: enabled |  |  |

It serves to set whether the JOG terminal has the highest priority. If the JOG terminal is preferred, the inverter switches to JOG.

| P8.28 | Frequency detection value (FDT2) |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 50 Hz |  |  |
| P8.29 | Hysteresis detection value (FDT2) |  | Default | $5.0 \%$ |
|  | Setting range | $0.0 \%-100.0 \%$ (FDT2 level) |  |  |

The frequency detection function is the same as the FDT1 function. For details, see P8.19 and P8.20.

| P8.30 | Frequency reaching the detected value 1 |  | Default | 50 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.00 Hz - maximum frequency |  |  |
| P8.31 | Frequency reaching the amplitude value 1 |  | Default | 0.0 \% |
|  | Setting range | 0.0\%-100.0\% (maximum frequency) |  |  |
| P8.32 | Frequency reaching the detected value 2 |  | Default | 50 Hz |
|  | Setting range | 0.00 Hz - maximum frequency |  |  |
| P8.33 | Frequency reaching the amplitude value 2 |  | Default | 0.0 \% |
|  | Setting range | 0.0\% - 100.0\% (maximum frequency) |  |  |

If the output frequency of the inverter in the positive and negative frequency amplitudes reaches the detection value, the corresponding M01 outputs are ON, (P6.01 = 26/27). The V 800 provides two groups with any frequency reaching detection parameters, including the detection frequency and amplitude detection as shown in the following figure.


Figure 4-18: Detection of any frequency

| P8.34 | Level of zero current detection |  | Default | 50 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%-300.0 \%$ (of rated motor current) |  |  |
|  | The delay time of zero current detection |  | Default | $0.0 \%$ |
|  | Setting range | $0.01 \mathrm{~s}-600.00 \mathrm{~s}$ |  |  |

If the output current of the inverter is equal to or less than the level of zero current detection, and the duration exceeds the delay time of zero current detection, the corresponding M01 terminal is ON. Detection the zero current is shown in the following figure.


Figure 4-19: Zero current detection

| P8.36 | Exceeding the output current limit |  | Default | $200 \%$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%-$ no detection <br> $0.1 \%-300.0 \%$ (rated motor current) |  |  |
|  | Delay time when exceeding the output <br> current limit |  |  | Default |

If the output current of the inverter is equal to or higher than the set limit and the duration exceeds the detection delay time, the corresponding output YO will be switched on. The function of output of overcurrent detection is shown in the following figure.


Figure 4-20 Current detection

| P8.38 | Current reaching the value of detection 1 |  | Default | 100.0 \% |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0-300.0 \% (rated motor current) |  |  |
| P8.39 | Current reaching the value of amplitude 1 |  | Default | 0.0 \% |
|  | Setting range | 0.0-300.0 \% (rated motor current) |  |  |
| P8.40 | Current reaching the value of detection 2 |  | Default | 100.0\% |
|  | Setting range | 0.0-300.0 \% (rated motor current) |  |  |
| P8.41 | Current reaching the value of amplitude 2 |  | Default | 0.0 \% |
|  | Setting range | 0.0-300.0 | motor cu |  |

If the output current of the inverter is in the positive and negative amplitudes of any current range, the corresponding output M01 is ON.

The V800 provides two groups with any current reaching detection parameters, including the current and amplitude detection values, as shown in the following figure.


Figure 4-21 Detecting any current

| P8.42 | Selection of timing function |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Disabled |  |
|  |  | 1 | Enabled |  |
| P8.43 | The selection of function the timing |  | Default | 0 |
|  | Setting range | 0 | P8.44 |  |
|  |  | 1 | FIV |  |
|  |  | 2 | FIC |  |
|  |  | 3 | Reserved |  |
|  |  | 100\% of the analog input corresponds to P8.44 |  |  |
| P8.44 | Time of duration |  | Default | 0.0 min |
|  | Setting range | 0.0 min - 6500.0 min |  |  |

These parameters are used to set the timing function for the inverter.
If parameter P8.42 is set to 1 , the inverter will start at startup. Once the set time has been reached, the inverter stops automatically and simultaneously switches on the corresponding M01 outputs.
The inverter starts the timing from 0 after each start and the remaining time can be detected via D0.20. Timing is set in parameters P8.43 and P8.44 in minutes.

| P8.45 | Lower limit of input voltage FIV |  | Default | 3.10 V |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.00 \mathrm{~V}-\mathrm{P8} .46$ |  |  |
| P8.46 | Upper limit of input voltage FIV | Default | 6.80 V |  |
|  | Setting range | P8.45-10.00 V |  |  |

These two parameters are used to set the input voltage limits to ensure inverter protection. If the FIV input is greater than P8.46 or less than P8.45, the corresponding M01 output is switched on, meaning the FIV input exceeds the set limit.

| P8.47 | Inverter temperature |  | Default | $100^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-150^{\circ} \mathrm{C}$ |  |  |

When the heat sink temperature of the inverter reaches the value of this parameter, the corresponding M01 becomes ON, indicating that the module temperature reaches the threshold.

| P8.48 | Fan control |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0: The fan works only during operation <br> 1: The fan works continuously |  |  |

It is used to set the working mode of the cooling fan. If this parameter is set to 0 , the fan works when the inverter is in running state. When the inverter stops, the cooling fan works if the heat sink temperature is higher than $40^{\circ} \mathrm{C}$, and stops working if the heat sink temperature is lower than $40^{\circ} \mathrm{C}$.
If this parameter is set to 1 , the cooling fan works after power-on of inverter.

\left.| P8.49 | Frequency at wake-up |  | Default | 0.00 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Frequency during sleep (P8.51) - maximum frequency |  |  |
|  |  |  |  |  |$\right]$.

These parameters are used to set sleep mode and wake-up functions in pump applications. If the inverter is in operation, it enters sleep mode and stops automatically after the set sleep time (P8.52), if the set frequency is lower or equal to the sleep frequency (P8.51). When the inverter is in sleep mode and the current trigger command is active, after the wake-up time (P8.50), the inverter starts if the set frequency is higher or equal to the wake-up frequency (P8.49).

In general, set the wake-up frequency equal to or higher than the sleep frequency. If the wake-up and sleep frequency is set to 0 , sleep and wake-up are off.
If the sleep function and the PID source are active, PID sleep mode is performed according to parameter PA.28. In this case, allow PID operation in the stop state (PA. $28=1$ ).

| P8.53 | Running time reached |  | Default | 0.0 min |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \mathrm{~min}-6500 \mathrm{~min}$ |  |  |

If the current turn on time reaches the value set in this parameter, the corresponding M01 output is ON.

Group P9: Faults and protection

| P9.00 | Selection of overload protection |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 |  | Disabled |
|  |  | 1 |  | Enabled |
| P9.01 | Increasing motor overload protection | Default | 1.00 |  |
|  | Setting range | $0.20-10.00$ |  |  |

P9.00 = 0
Overload protection function is off. The motor is exposed to potential damage due to overheating. It is recommended to install a thermal relay between the inverter and the motor.
P9.00 = 1
The inverter evaluates whether the motor is overloaded according to the inverse time-lag curve of the motor overload protection
The inverse time delay of the overload protection of the motor is:
$220 \%$ * P9.01 * rated motor current (if the load remains at that value for one minute, the inverter reports an overload motor error) or
$150 \%$ * P9.01 * rated motor current (if the load remains at this value after 60 minutes, the inverter reports a motor overload error).
Set P9.01 based on actual overload. If the value of parameter P9.01 is set to too high, the motor may be damaged if the motor overheats but the inverter does not sound an alarm.

| P9.02 | Motor overload warning coefficient |  | Default |
| :---: | :---: | :---: | :---: |$\quad 80 \%$

This function serves to provide a warning signal to the control system via the M01 output before motor overload protection. This parameter is used to determine the percentage at which a pre-warning is performed before the motor is overloaded. The larger the value, the shorter the pre-warning period.
If the total output current of the inverter is greater than the value of the inverse time curve of the overload multiplied by the value of P9.02, the multi-function digital output M01 (motor overload pre-warning) will turn ON.

| P9.03 | Increasing overload |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Rozsah nastavenia | 0 (no overvoltage) - 100 <br> To activate the brake unit, set P9.03=0 |  |  |
|  | Overvoltage stall protective voltage | Default | $130 \%$ |  |
|  | Setting range | $120 \%-150 \%$ (3 phases) |  |  |

If the DC bus voltage exceeds P 9.04 (overvoltage protection) during engine deceleration, the inverter will stop the deceleration and maintain the current running frequency. After lowering the bus voltage, the motor continues to decelerate. The parameter P9.03 (increasing overload of DC overvoltage) is used to set the protection of suppression the overvoltage in the inverter. The higher the value, the greater the protection.)
Assuming no overvoltage, set P9.03 to a small value.
For low loads, the value should be small. Otherwise, the system's dynamic response will be slow. With high inertial load, the value should be large. Otherwise, the suppression result will be weak and there may be a breakdown. If the overvoltage increase is set to 0 , the overvoltage function is off.

| P9.05 | Overcurrent increasing |  | Default | 20 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-100$ |  |  |
| P9.06 | Overcurrent protection |  |  | Default |
|  | Setting range | $100 \%-200 \%$ |  |  |

If the output current exceeds the protective current during acceleration / deceleration of the AC motor, the inverter will stop the acceleration / deceleration and maintain the current running frequency.
P9.05 (Current increment) is used to set the overcurrent protection of the AC motor. The higher the value, the higher the overcurrent protection. Assuming no overcurrent, set P9.05 to a small value.
For low loads, the value should be small. Otherwise, the system's dynamic response will be slow. With high inertial load, the value should be large. Otherwise, the suppression result will be weak and a malfunction may occur. If the overload increment of current is set to 0 , the overload function is off.

| P9.07 | Short to ground after switching on |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Disabled |  |
|  |  | 1 | Enabled |  |

It is used to determine if the motor should be shorted to ground when switching on the inverter. If this function is on, the $\mathrm{U} V \mathrm{~W}$ outputs of inverter will connect to the voltage after a certain test time.

| P9.09 | Auto restoration times after malfunction |  | Default |
| :--- | :---: | :---: | :---: |
|  | Setting range | 0 |  |

Used to set automatic reset the times of faults when this function is used. After exceeding the value, the inverter will remain in a malfunction.

| P9.10 | Output state M01 during auto- <br> recovery after malfunction | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 : no activity; 1: activity |  |

It is used when deciding whether M01 is activated when the fault is automatically reset.

| P9.11 | Auto-recovery interval after <br> malfunction | Default | 1.0 s |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0.1 \mathrm{~s}-100.0 \mathrm{~s}$ |  |

It is used to set the auto-reset delay after failure.

## P9.12 Reserved

| P9.13 | Turn on protection when the output <br> phase fails | Default | 1 |
| :---: | :---: | :--- | :--- | :--- |
|  | Setting range | 0: disabled <br> $1:$ enabled |  |

Used to determine if protection is to be done when the output phase is lost.

| P9.14 | The first type of malfunction | 0.0 |
| :---: | :---: | :---: |
| P9.15 | The second type of malfunction |  |
| P9.16 | The third (last) type of malfunction |  |

It is used to record the types of the last three faults of the inverter. The number 0 means no fault. Refer to Chapter 5 for possible causes and solutions for each failure.

| P9.17 | Frequency at the 3rd error | Shows the frequency at which the last <br> error occurred. |
| :---: | :---: | :--- |
| P9.18 | Current at the 3rd error | Displays the current state when the last <br> fault occurred. |



| P9.35 | Reserved |  |
| :---: | :---: | :---: |
| P9.36 | Reserved |  |
| P9.37 | Frequency at the 1st error | The same as P9.17-P9.24 |
| P9.38 | Current at the 1st error |  |
| P9.39 | Bus voltage at the 1st error |  |
| P9.40 | State of input terminals at the 1st error |  |
| P9.41 | State of output terminals at the 1st error |  |
| P9.42 | Inverter status at 1st error |  |
| P9.43 | Duration of turn on at 1st error |  |
| P9.44 | Duration of run mode at 1st error |  |
| P9.45 | Reserved |  |
| P9.46 | Reserved |  |


| P9.47 | Selection of failure protection action 1 |  | Default | 00000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Units | Motor overload (OL1 ) |  |
|  |  | 0 | Deceleration to stop |  |
|  |  | 1 | STOP by stop mode |  |
|  |  | 2 | Continuing in run |  |
|  |  | Tens | Reserved |  |
|  |  | Hundreds | Phase loss (LO) (same as the digit of units) |  |
|  |  | Thousands | External device error (EF) (same as the digit of units ) |  |
|  |  | Tens of thousands | Communication error (CE) (same as the digit of units) |  |


| P9.48 | Selection of failure protection action 2 |  | Default | 00000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Units | Reserved |  |
|  |  | 0 | Deceleration to stop |  |
|  |  | 1 | Switch to V/F control, STOP by stop mode |  |
|  |  | 2 | Switch to V/F control, the motor continues in run |  |
|  |  | Tens | Code of function of faulty reading (EEP) |  |
|  |  | 0 | Deceleration to stop |  |


|  |  | 1 |  | STOP by stop mode |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hundreds |  | Reserved |  |
|  |  | Thousands |  | Reserved |  |
|  |  | Tens of thousands |  | Total time was reached (END1) (the same as the digit of units in P9.47) |  |
| P9.49 | Selection of failure protection action 3 |  |  | Default | 00000 |
|  | Units |  |  | Reserved |  |
|  | Tens |  |  | Reserved |  |
|  |  | Hundreds |  | The total time of power on was reached (END2) (the same as the digit of units in P9.47) |  |
|  |  | Thousands |  | Start of load (LOAD) |  |
|  | Setting range | 0 |  | Deceleration to stop |  |
|  |  | 1 |  | STOP by stop mode |  |
|  |  | 2 |  | Continues to operate at 7\% of the rated motor frequency and recovers the set frequency if the load resumes |  |
|  |  | Tens of thousands |  | PID feedback in RUN (PIDE) (the same as the digit of units in P9.47) |  |
| P9.50 | Reserved |  |  |  |  |
| P9.51 | Reserved |  |  |  |  |
| P9.52 | Selection of d the value on th of the dis | splaying 2nd line play | 0 : Running frequency <br> 1: Set frequency <br> 2: DC bus voltage <br> 3: Output voltage <br> 4: Output current <br> 5: Output power <br> 6: Output torque <br> 7: Status of terminal S <br> 8: Status of terminal M01 <br> 9 to 40: According to D0 parameters |  |  |

If "Coast to stop" is selected, the AC drive displays error code and directly stops.
If "Stop according to the stop mode" is selected, the inverter displays alarm code and stops according to the stop mode. After stopping, the inverter displays error code.
If "Continue to run" is selected, the AC drive continues to run and displays alarm code. The running frequency is set in P9.54.

| P9.54 | Frequency selection for continuing to run |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Actual running frequency |  |
|  |  | 1 | Set frequency |  |
|  |  | 2 | The upper frequency limit |  |
|  |  | 3 | The lower frequency limit |  |
|  |  | 4 | Backup frequency for error |  |
| P9.55 | Backuped frequency at error |  | Default | 100.0\% |
|  | Setting range | 60.0 \% | 00.0 \% |  |

If a fault occurs during the running of the inverter and the manner of solving the fault is set to "Continue to run", the inverter displays alarm code and continues to run at the frequency set in P9.54. The value in $\mathrm{P9.55}$ is the percentage of the maximum frequency.


In case of a sudden power failure or a sudden drop in voltage, the DC bus voltage is reduced. This feature allows the inverter to compensate for decreasing the DC bus voltage by energy of feedback reducing the output frequency to maintain the continuous operation of the AC motor.
If P9.59 $=1$ in case of a sudden power outage or a sudden drop in voltage, the inverter will decelerate.
After recovering the normal bus voltage, the inverter accelerate to the set frequency. If the bus voltage remains normal for a time exceeding the value set in P9.61, the bus voltage is normal.

If P9.59 = 2 in case of a sudden power outage or a sudden drop in voltage, the inverter will decelerate until it stops.
Figure 4-22 shows the inverter's actions after a sudden power outage.


Figure 4-22: Operation of the inverter after a power failure

| P9.63 | Protection at zero load |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 |  | Disabled |
|  |  | 1 | Enabled |  |
| P9.64 | Level of zero load detection |  | Default | 10.0 \% |
|  | Setting range | 0.0\%-100.0 \% (rated motor current) |  |  |
| P9.65 | The zero load detection time |  | Default | 1.0 s |
|  | Setting range |  | $0.0 \mathrm{~s}-60.0 \mathrm{~s}$ |  |

If the zero load protection is activated and the output current of the inverter is lower than the detection level (P9.64) and the continuous time exceeds the detection time (P9.65), the inverter output frequency automatically drops to $7 \%$ of the nominal frequency. During protection the inverter automatically accelerates to the set frequency if the normal load is restored.
P9.67-P9.70 Reserved

## Group PA: PID process control functions

PID control is a general method of process control. By means of linear, integration and differential operations between the feedback signal and the target signal, the output frequency is adjusted and generates a feedback system to stabilize the controlled target value.
It is applied to process control, such as flow control, pressure and temperature control. The following figure shows the PID master block diagram.


Figure 4-23: Block diagram of PID control


PA. 00 is used to select the PID setting channel. The PID setting is a relative value ranging from $0.0 \%$ to $100.0 \%$. PID feedback is also a relative value. The purpose of the PID control is the same PID and PID feedback setting.

| PA. 02 | Setting of source the feedback of PID |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | FIV |  |
|  |  | 1 | FIC |  |
|  |  | 2 | Reserved |  |
|  |  | 3 | FIV to FIC |  |
|  |  | 4 | IMPULSE setting (S3), option |  |
|  |  | 5 | Communication setting |  |
|  |  | 6 | FIV + FIC |  |
|  |  | 7 | MAX (\|FIV|, |FIC|) |  |
|  |  | 8 | MIN (\|FIV|,|FIC|) |  |

This parameter serves to select the PID feedback signal channel.
PID feedback is a relative value ranging from $0.0 \%$ to $100.0 \%$.

| PA.03 | Direction of action the PID |  |  | Default |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Action forward |  |  |  |
|  |  | 1 | Action backward |  |  |  |

0: Action forward
If the feedback value is less than the PID setting, the inverter output frequency rises. For example, winding voltage control requires a PID action forward.
1: Action backward
If the feedback value is less than the PID, the output frequency of the inverter will be reduced. For example, unwinding tension control requires a reverse PID action. Note that
this function is affected by the inverting of the multifunctional PID terminal. In this application, pay attention.

| PA. 04 | Setting range of PID feedback |  | Default | 1000 |
| :--- | :---: | :--- | :--- | :--- |
|  | Setting range | $0-65535$ |  |  |

This parameter is a dimensionless value. It shows the PID setting (D0.15) and the PID feedback (DO.16).
The relative value of $100 \%$ of the PID feedback corresponds to PA. 04 . If PA. 04 is set to 2000 and the PID setting is $100 \%$, the PID setting (D0.15) is 2000.

| PA. 05 | Linear constant Kp1 |  | Default | 20.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0-100.0$ |  |  |  |
| PA.06 | Integration constant Ti1 | Default | 2.00 s |  |  |
|  | Setting range |  | $0.01 \mathrm{~s}-10.00 \mathrm{~s}$ |  |  |
| PA. 07 | Derivation constant Td1 | Default | 0.0 s |  |  |
|  | Setting range |  | $0.0-10.0$ |  |  |

PA. 05 (Linear constant Kp1)
Specifies the intensity of PID control. The higher the Kp1, the greater the control intensity. The value of 100.0 indicates when the variance between the PID feedback and the PID setting is $100.0 \%$. Setting the amplitude of the PID controller at the reference output frequency is the maximum frequency.
PA. 06 (Integration constant Ti1)
It determines the intensity of integration. The shorter the integration time, the greater the control intensity. When the deviation between the PID feedback and the PID setting is $100.0 \%$, the integral controller performs the continuous setting for the time set in PA. 06 . Then the amplitude of the setting reaches the maximum frequency.
PA. 07 (Derivation constant Td1)
Specifies the intensity of differential PID control. The longer the derivation time, the greater the control intensity. Derivative time is the time at which the feedback change reaches $100.0 \%$ and then the amplitude of the setting reaches the maximum frequency.

| PA. 08 | Disconnection frequency PID of reverse rotation |  | Default | 2.0 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 -max. frequency |  |  |

In some situations, if the PID output frequency is a negative value (reverse engine rotation), the PID setting and the PID feedback may be the same. However, for some applications, the too high reverse rotation rate is disabled and PA. 08 is used to determine the upper limit of the reverse rotation frequency.

| PA. 09 | Limit of PID deviation |  | Default |
| :--- | :---: | :---: | :---: |
|  | Setting range | $0.0 \%$ |  |

If the deviation between the PID feedback and the PID is less than the PA19 value, the PID control stops. A small deviation between the PID feedback and the PID setting causes the output frequency to be stable and unchangeable, which is particularly effective for some closed-loop control applications.

PA. 10

| PID differential limit |  | Default |
| :---: | :---: | :---: |
| Setting range | $0.0-100.0 \%$ |  |

Used to set the PID differential output range. With PID control, differential operation can easily cause system oscillation. Differential control of PID is therefore limited to a small range. PA. 10 is used to set the differential output PID range.

| PA. 11 | Setting the PID change time |  | Default |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.00-650.0 \mathrm{~s}$ |  |  |

The changeover time of the PID indicates the time needed to change the PID setting from $0.0 \%$ to $100.0 \%$. The PID setting changes linearly according to varying times, reducing the impact caused by the sudden change in setting in the system.

| PA. 12 | The time of filtering PID feedback |  | Default | 0.00 s |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  | Setting range | $0.00-60.0 \mathrm{~s}$ |  |  |  |
| PA.13 | The time of filtering PID output |  |  |  |  |
|  | Sefault | 0.00 s |  |  |  |
|  | Setting range | $0.00-60.0 \mathrm{~s}$ |  |  |  |

PA. 12 is used to filter PID feedback, helping to reduce feedback interference, but slows down the system's response.
PA. 13 is used to filter out the PID output frequency, what helps to suppress the sudden change of frequency the inverter, but slows down the system's response.

| PA.15 | Linear constant Kp2 |  | Default |
| :---: | :---: | :---: | :---: |
|  | Setting range | 20.0 |  |
| PA.16 | Integration constant Ti2 |  | Default |
|  | Setting range | $0.00-100.0$ | 2.00 s |
| PA.17 | Derivation constant Td2 | Default | 0.00 s |
|  | Setting range | $0.0-10.0$ |  |


| PA. 18 | Switching condition of PID parameters |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | No switching |  |
|  |  | 1 | Switching over S |  |
|  |  | 2 | Automatic switching based on deviation |  |
| PA. 19 | Deviation of the parameter switching PID 1 |  | Default | 20 \% |
|  | Setting range | 0.0 \% - PA. 20 |  |  |
| PA. 20 | Deviation of the parameter switching PID 2 |  | Default | 80 \% |
|  | Setting range |  | PA. $19-100 \%$ |  |

In some applications, switching the PID parameters is required if one group of PID parameters fails to meet the requirement of the entire running process. These parameters are used to switch between two groups of PID parameters.
Controller parameters from PA. 15 to PA. 17 are set in a similar way to PA. 05 to PA. 07.
Switching can be done either via the S-terminal or automatically by the deviation.
If switching via input $S$ is selected, function 43 must be assigned to input $S$ ("Switching PID parameters"). If $S$ is off, parameter group 1 (PA. 05 to PA.07) is selected. If $S$ is on, group 2 is selected (PA. 15 to PA.17).
When the absolute value of the deviation between the PID feedback and the PID is less than PA. 19 and the automatic switching is selected, the PID parameter selects group 1. When the absolute value of the deviation between the PID feedback and the PID is greater than the PA20 value, the PID parameter selects group 2. When there is a variation between PA. 19 and PA.20, PID parameters are linearly interpolated values of two groups of parameter values.


Figure 4-24 Switching PID parameters

\left.| PA. 21 | Initial value of PID |  | Default |
| :---: | :---: | :---: | :---: |$\right] 0 \%$

When the inverter starts, the PID will start the closed loop algorithm only after the PID output is stabilized to the PID value (PA.21) and this delay time is set in PA. 22 .


Figure 4-25 Functions of initial value the PID

| PA.23 | Maximum deviation between two <br> PID outputs in the forward <br> direction |  | Default |
| :---: | :---: | :---: | :---: |$| 1.00 \%$

This function serves to limit the variance between two PID outputs ( 2 ms to the PID output) which suppress the fast change of the PID output and stabilize the AC motor operation.
PA. 23 and PA. 24 correspond to the maximum absolute value of the output deviation in the forward and reverse directions.

| PA. 25 | Properties of PID integration |  | Default | 00 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Units | Separated integration |  |
|  |  | 0 | Disabled |  |
|  |  | 1 | Enabled |  |
|  |  | Tens | Stop the integration when the output <br> reaches the required limit |  |
|  |  | 0 | Continuing |  |
|  |  | 1 | Stop |  |

Separate Integration
If separate Integration is enabled, the PID stops the operation when to $X$ is assigned 38 "PID integration paused". In this case, only linear and differential operations are effective. If separate integration is disabled, it does not matter whether or not the 38 "PID Integrated Suspended" function assigned to $S$ is enabled.
Integration is a stop when the output reaches the required limit. If "stop integration" is selected, the PID integration operation stops, which can help reduce the PID parameter overrun.

| PA. 26 | Detection of PID controller feedback loss |  | Default | 0.00 \% |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0.0 \%$ : loss of feedback is not detected 0.1\%: 100.0\% |  |  |
| PA. 27 | Detection time when PID controller feedback is lost |  | Default | 0.0 s |
|  | Setting range | 0.0 s - 20.0 s |  |  |

These parameters are used to assess the loss of PID feedback.
If the PID feedback is less than PA. 26 and the continuous time exceeds PA.27, the inverter reports Err31 and operates according to the selected failure protection action.

| PA. 28 Správanie sa PID pri strate spätnej väzby   Štandardne 0 <br>  Rozsah nastavenia 0 Žiadna akcia PID a STOP   <br>   1 Akcia PID a STOP   |
| :--- | If the PID feedback is less than PA. 26 and the total time exceeds PA.27, the inverter reports PIDE and continues according to the selected failure protection action.

## Group PB: Variable frequency, fixed length and count

The swing frequency function is applied to the textile and chemical fibre industry and to applications where winding functions are needed. The swing frequency function indicates that the inverter output frequency changes up and down around the set midrange frequency. The frequency course on the timeline is shown in the following figure.
The swing frequency amplitude is set in Pb .00 and PB .01 . When Pb .01 is set to 0 , the swing frequency amplitude is 0 and the swing frequency function is not used.


Figure 4-26: Frequency swing control

| Pb .00 | Set the swing frequency mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Relative to the mean value of the <br> frequency |  |
|  | 1 | Relative to the maximum value of <br> the frequency |  |  |

This parameter serves to select the base value of the swing amplitude. 0 : With regard to medium frequency (P0.03 frequency source selection) it is a variable swing value. The amplitude varies according to the medium frequency (set frequency). 1: With regard to the maximum frequency (maximum output frequency PO.12) it's a fixed swing value. The amplitude does not change.

| Pb. 01 | Amplitude of swing frequency |  |  |  |
| :---: | :---: | :--- | :--- | :---: |
|  | Setting range | Default | $0.00 \%$ |  |
| Pb. 02 | Amplitude of the jump frequency | Default | $0.0 \%-100.0 \%$ |  |
|  | Setting range | $0.0 \%-50.0 \%$ |  |  |

This parameter is used to determine the amplitude of the swing frequency and the jump frequency.
The swing frequency is limited by the upper frequency limit and the lower frequency limit. Concerning the middle frequency ( $\mathrm{Pb} .00=0$ ), the actual AW amplitude of the swing is the result of the calculation the value of P0.03 (frequency source selection) multiplied by Pb .01 . Compared to the maximum frequency ( $\mathrm{Pb} .00=1$ ), the actual AW amplitude of the swing is the result of P 0.12 (maximum frequency) multiplied by Pb .01 . Jump Frequency $=$ Swing amplitude AW $\times \mathrm{Pb} .02$ (Jump frequency amplitude). With respect to the mean frequency ( $\mathrm{Pb} .00=0$ ), the jump frequency is a variable value. As for the maximum frequency ( $\mathrm{Pb} .00=1$ ), the jump frequency is a fixed value.
Frequency of the swing is limited by the upper and lower frequency limits.

| Pb. 03 | Frequency swing cycle |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 10.0 s |  |  |
| Pb .04 | $0.1 \mathrm{~s}-3000.0 \mathrm{~s}$ |  |  |  |
|  | Sime coefficient of triangle wave rise | Default | $50.00 \%$ |  |
|  | Setting range | $0.1 \%-100.0 \%$ |  |  |

Swing frequency cycle: the time of a complete swing frequency cycle.
Pb .04 specifies the time percentage of triangular wave rising time to Pb .03 (Swing frequency cycle).
Triangular wave rising time $=\mathrm{Pb} .03$ (Swing frequency cycle) $\times \mathrm{Pb} .04$ (Triangular wave rising time coefficient, unit: s).
Triangular wave falling time $=\mathrm{Pb} .03$ (Swing frequency cycle) $\times$ (1- Pb .04 Triangular wave rising time coefficient. unit: s).

| Pb. 05 | Set length | Default | 1000 m |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0m-65535 m |  |
| Pb. 06 | Actual length | Default | 0 |
|  | Setting range | 0m-65535m |  |
| Pb. 07 | Number of pulses per meter | Default | 100 |
|  | Setting range | 0.1-6553.5 |  |

Previous parameters are used to control fixed lengths. Length information is gathered through multifunctional digital inputs. The actual length Pb .06 is calculated by dividing the number of pulses registered via input S by Pb .07 (pulse per meter).

When the actual length Pb .06 exceeds the set length in Pb .05 , output M01 is assigned function 10 (reached length) turns ON.

During length measurement mode, length reset can be performed via terminal S with assigned function 28 . See P5.00 to P5.09 for details.

Assign function 27 (length measurement input) to the appropriate S-terminal in the desired applications. If the pulse frequency is high, input S3 must be used.

| Pb.08 | Set counter value |  | Default | 1000 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $1-65535$ |  |  |
| Pb.09 | Determined counter value | Default | 1000 |  |
|  | Setting range | $1-65535$ |  |  |

Input pulses are input from multi-function input terminals. Assign the function 25 (counter input) to the appropriate input terminal. If the pulse frequency is high, input S3 must be used.

When the counter value reaches the set value ( Pb .08 ), the M01 clamp with assigned function 8 (achieved counter value reached) is ON. Then the counter stops.
When the counter value reaches the value (Pb.09), the M01 terminal with function 9 (setpoint value reached) turns ON (ON). The counter is then counted until the set value is reached. The value of Pb .09 should be equal to or less than Pb .08 .


Figure 4-27: Reached set value of the counter

## Group PC: Multiple functions and simple PLC function

The V800 has many more instructions than just a multiple speed. In addition to multiple speeds, they can be used as a separate V/F voltage source and PID controller source settings. The simple PLC function differs from the function of the $V 800$ programmable by user. The simple PLC can perform only a simple combination of multiple instructions, but
the user-programmable function is richer and more practical. See the PC group description for details.

| PC. 00 | Multifunction 0 | Default | 10.0 \% |
| :---: | :---: | :---: | :---: |
|  | Setting range | from -100\% to +100\% |  |
| PC. 01 | Multifunction 1 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 02 | Multifunction 2 | Default | 10.0 \% |
|  | Setting range | from-100\% to +100\% |  |
| PC. 03 | Multifunction 3 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 04 | Multifunction 4 | Default | 10.0 \% |
|  | Setting range | from-100\% to +100\% |  |
| PC. 05 | Multifunction 5 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 06 | Multifunction 6 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 07 | Multifunction 7 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 08 | Multifunction 8 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 09 | Multifunction 9 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 10 | Multifunction 10 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 11 | Multifunction 11 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 12 | Multifunction 12 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 13 | Multifunction 13 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 14 | Multifunction 14 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |
| PC. 15 | Multifunction 15 | Default | 10.0 \% |
|  | Setting range | from -100\% to +100\% |  |

The multiple instruction can be used in three cases: as a frequency source, a V/F separate voltage source and the source of process setting PID controller. The multiple instruction is a relative value and in range from $-100.0 \%$ to $+100.0 \%$.

As a frequency source a percentage is set relative to the maximum frequency. As a separate V/F voltage source this is the percentage with respect to the rated motor voltage. As a source of PID process setup, it does not require conversion.
Multiple instructions can be switched based on different states of multifunctional digital Sterminals. See the P5 group description for details.

| PC.16 | Run mode of the simple PLC |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Stop after performing of one cycle of the <br> inverter |  |
|  | 1 | Keeps the last values after the inverter <br> performs one cycle |  |  |
|  | 2 | Repeat after performing of one cycle of <br> the inverter |  |  |

0: Stop after performing of one cycle of the inverter
The inverter stops after one cycle and does not start until another command is received.
1: Keeps the last values after the inverter performs one cycle
The inverter keeps the final running frequency and direction after one cycle.
2: Repeat after performing of one cycle of the inverter
After one cycle the inverter will automatically start another cycle and continue until the stop command is received.
Simple PLC function has two functions: frequency source or V/F separated voltage source.


Figure 4-28 Simple PLC when used as a frequency source

When a simple PLC is used as the frequency source, the values of PC. 00 to PC. 15 are positive or negative and determine the direction of operation. If the parameter values are negative, it means the engine runs in the opposite direction.

As a source of frequency, the PLC has three modes of operation but as a separate V/F source, it does not have three modes, that is:
0 : Stop after performing of one cycle of the inverter
The inverter stops after one cycle and does not start until another command is received.
1: Keeps the last values after the inverter performs one cycle
The inverter keeps the final running frequency and direction after one cycle. 2: Repeat after performing of one cycle of the inverter
After one cycle the inverter will automatically start another cycle and continue until the stop command is received.

| PC. 17 | Setting the memory for selecting a simple PLC |  | Default | 00 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | Units | Storage after power failure |  |
|  |  | 0 | No |  |
|  |  | 1 | Yes |  |
| PC. 17 | Setting range | Tens | Storage after the STOP command |  |
|  |  | 0 | No |  |
|  |  | 1 | Yes |  |

Setting the memory to select a simple PLC in the event of a power outage means that the inverter remembers the actual PLC status and the frequency before the power failure and will continue to run according to memorized data. If the unit number is 0 , the inverter starts the PLC process after it is switched on again.

Setting the PLC to memorize the status after stop means that the inverter records the running parameters and the running frequency at the stopping moment and will continue to run from the recorded moment after its restart. If the decimal number is set to 0 , the inverter will start the PLC process after the reboot.

| PC. 18 | Duration of run mode the single PLC command 0 |  | Default | 0.0 s (hours) |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 19 | The acceleration / deceleration time of the simple PLC command 0 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 20 | Duration of run mode the single PLC command 1 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 21 | The acceleration / deceleration time of the simple PLC command 1 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 22 | Duration of run mode the single PLC command 2 |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |
| PC. 23 | The acceleration / deceleration time of the simple PLC command 2 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 24 | Duration of run mode the single PLC command 3 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 25 | The acceleration / deceleration time of the simple PLC command 3 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 26 | Duration of run mode the single PLC command 4 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 27 | The acceleration / deceleration time of the simple PLC command 4 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 28 | Duration of run mode the single PLC command 5 |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |
| PC. 29 | The acceleration / deceleration time of the simple PLC command 5 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |


| PC. 30 | Duration of run mode the single PLC command 6 |  | Default | 0.0 s (hours) |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 31 | The acceleration / deceleration time of the simple PLC command 6 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 32 | Duration of run mode the single PLC command 7 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 33 | The acceleration / deceleration time of the simple PLC command 7 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 34 | Duration of run mode the single PLC command 8 |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |
| PC. 35 | The acceleration / deceleration time of the simple PLC command 8 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 36 | Duration of run mode the single PLC command 9 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 37 | The acceleration / deceleration time of the simple PLC command 9 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 38 | Duration of run mode the single PLC command 10 |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |
| PC. 39 | The acceleration / deceleration time of the simple PLC command 10 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |
| PC. 40 | Duration of run mode the single PLC command 11 |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |
| PC. 41 | The acceleration / deceleration time of the simple PLC command 11 |  | Default | 0 |
|  | Setting range | 0-3 |  |  |


| PC. 42 | Duration of run mode the single PLC command 12 |  |  | Default | 0.0 s (hours) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 s (hours) - 6553.5 s (hours) |  |  |  |
| PC. 43 | The acceleration / deceleration time of the simple PLC command 12 |  |  | Default | 0 |
|  | Setting range | 0-3 |  |  |  |
| PC. 44 | Duration of run mode the single PLC command 13 |  |  | Default | 0.0 s (hours) |
|  | Setting range | 0.0 s (hours) -6553.5 s (hours) |  |  |  |
| PC. 45 | The acceleration / deceleration time of the simple PLC command 13 |  |  | Default | 0 |
|  | Setting range | 0-3 |  |  |  |
| PC. 46 | Duration of run mode the single PLC command 14 |  |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |  |
| PC. 47 | The acceleration / deceleration time of the simple PLC command 14 |  |  | Default | 0 |
|  | Setting range | 0-3 |  |  |  |
| PC. 48 | Duration of run mode the single PLC command 15 |  |  | Default | 0.0 s (hours) |
|  | Setting range | -0.0 s (hours) -6553.5 s (hours) |  |  |  |
| PC. 49 | The acceleration / deceleration time of the simple PLC command 15 |  |  | Default | 0 |
|  | Setting range | 0-3 |  |  |  |
| PC. 50 | Time unit of a simple PLC |  |  | ault | 0 |
|  | Setting range | 0 | S (seconds) |  |  |
|  |  | 1 | H (hours) |  |  |
| PC. 51 | Source 0 |  |  | ault | 0 |
|  | Setting range | 0 | Set from PC. 00 |  |  |
|  |  | 1 | FIV |  |  |
|  |  | 2 | FIC |  |  |
|  |  | 3 | Reserved |  |  |
|  |  | 4 | IMPULSE setting |  |  |
|  |  | 5 | PID |  |  |
|  |  | 6 | Set according to the preset frequency (P0.10), modified by UP / DOWN keys |  |  |

Specifies setting parameters of the channel 0 . You can make convenient switching between setting channels. When multiple-command or simple PLCs are used as the source of frequency, switching between two frequency sources can be easily implemented.

## Group PD: Communication parameters

See the special appendix "Communication protocol V 800 and directories"

## Group PP: Restoring the factory setting and blocking the change of parameters

| PP. 00 | User Password | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | $0-65535$ |  |

If the parameter is set to any nonzero number, password protection is enabled. After setting up and executing a password, enter the correct password to enter the menu. If the entered password is incorrect, you cannot view or modify the parameters. If PP. 00 is set to 00000, the previously set user password is cleared and password protection is off.

| PP. 01 | Restore factory settings |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 00 | No activity |  |
|  |  | 01 | Restore factory setting except motor <br> parameters |  |
|  |  | 02 | Delete records |  |
|  |  | 11 | High frequency controll |  |

1: Restore factory setting except motor parameters
If PP-01 is set to 1 , most of the function codes are reset to the default setting, except for motor parameters, (P0.22) frequency range setting, fault logs, total running time (P7.09), total switch-on time (P7.13) and total energy consumption (P7.14).
2: Delete records
If PP. 01 is set to 2, fault records, total run time (P7.09), total switch-on time (P7.13), and total power consumption (P7.14) are deleted.
11: High frequency control activated If you want to manage e.g. high frequency spindle (generally above 100 Hz ) activate this parameter

| PP. 04 | Blocking of parameter changes | Default | 0 |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0: Parameter change allowed <br> 1: Parameter change is blocked |  |

Group CO: Torque control and parameter limitation

| c0.00 | Selection of control the speed / <br> torque |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Speed control |  |
|  | 1 | Torque control |  |  |

It is used to select the inverter control mode: speed control or torque control.
V 800 provides S-terminals with two torque-related functions, "Torque control is disabled" (function 29) and switching between "Speed control / torque control" (function 46). Both S-terminals must be used together with C0.00 to perform the speed / torque control switching. If function 46 (switching speed control / torque control) is assigned to the Sterminal, it is OFF, the control mode is determined by C 0.00 . If the S terminal allocated with function 46 is ON , the control mode is to reverse the value of $\mathrm{CO}-00$.
However, if the torque control function is disabled, the inverter is fixed for operation in the speed control mode.

| C0.01 | Torque control source settings |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Digital setting (CO.O3) |  |
|  |  | 1 | FIV |  |
|  |  | 2 | FIC |  |
|  |  | 3 | Reserved |  |
|  |  | 4 | IMPULSE setting, option |  |
|  |  | 5 | Communication setting |  |
|  |  | 6 | MIN (FIV, FIC) |  |
|  |  | 7 | MAX (FIV, FIC) |  |
| C0.03 | Digital setting of torque control |  | Default | 150 \% |
|  | Setting rang |  | \% + $200 \%$ |  |

Parameter C 0.01 is used for "Torque Control Source Settings". There are a total of 8 Torque Controllers. The torque setting is the relative value, the value of $100.0 \%$ corresponds to the nominal torque. The adjustment range is from $-200.0 \%$ to $200.0 \%$, which means that the maximum torque of the inverter is twice the nominal torque of the motor.
The torque setting uses 1-7, i.e.. communication interface, analog input and pulse input. The data format is $-100.00 \%$ to $100.00 \%$. $100 \%$ corresponds to C0.03.

| C0.05 | Maximum frequency forward at <br> torque control | Default | 50.00 Hz |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0.0 Hz -maximum frequency |  |
| C 0.06 | Maximum frequency backward at <br> torque control | Default | 50.00 Hz |
|  | Setting range | 0.0 Hz - maximum frequency |  |

These two parameters are used to set the maximum frequency for forward or reverse rotation in torque control mode.
For torque control, if the load torque is less than the output torque of the motor, the motor speed will increase steadily. To prevent failure of the mechanical system, the maximum motor speed must be limited in torque regulation. You can perform a smooth change of the maximum frequency in the torque control dynamics by controlling the upper frequency limit.

| C0.07 | The acceleration time for torque <br> control |  | Default | 0.00 s |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range |  | $0.00 \mathrm{~s}-650.0 \mathrm{~s}$ |  |
| The deceleration time for torque <br> control | Default | 0.00 s |  |  |
|  | Setting range | $0.00 \mathrm{~s}-650.0 \mathrm{~s}$ |  |  |

In torque control, the difference between the motor output torque and the load torque determines the rate of change of the motor speed and the load. The speed of rotation of the motor can change rapidly, causing noise or excessive mechanical stress. Setting the acceleration / deceleration time in the torque control smoothly changes the engine speed. In applications that require fast torque response, set the acceleration/deceleration time in torque control to 0.00 s . For example, two inverters are connected to drive the same load. To balance the load distribution, set one inverter as master in speed control and the other as slave in torque control.
The slave inverter receives the output torque from the master inverter as a torque command and must respond quickly. In this case, the acceleration / deceleration time of the slave converter in the torque controller is set to 0.0 s.

## Group C5: Parameters of optimization the control

| C5.00 | Upper limit of PWM frequency switching |  |  | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 12.00 Hz |  |  |

This parameter is only used for V/F control.
Used to determine Wave Modulation Mode when controlling a V/F asynchronous motor. If the frequency is lower than the value of this parameter, the waveform is a 7-segment continuous modulation. If the frequency is higher than the value of this parameter, the waveform is a 5 -segment intermittent modulation.
7-segment continuous modulation causes more loss but less current ripple. 5-segment intermittent modulation causes less loss but greater current ripple. This can lead to instability of the motor at high frequency. Do not change this parameter normally.
For instability of the V/F control, see parameter P4.11. When temperature increases, see parameter P0.17.

| C5.01 | PWM modulation mode |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | 0: Asynchronous modulation |  |
|  |  | 1 | 1: Synchronous modulation |  |

V/F control is effective when asynchronous modulation is used and the output frequency is high (over 100 HZ ), resulting in output voltage quality.

| C5.02 | Compensation method |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | No compensation |  |
|  |  | 1 | Compensation mode 1 |  |
|  |  | Compensation mode 2 |  |  |

In general, there is no need to modify it.

| C5.03 | Random dimension of PWM |  | Default | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Disabled |  |
|  |  | $1-10$ | Random dimension of carrier frequency <br> PWM |  |

This parameter reduces motor noise, reduces electromagnetic interference.

| C5.04 | Open limitation of current |  | Default | 10 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | Disabled |  |
|  |  | 1 | Enabled |  |

The parameter can limit the occurrence of a fault due to overcurrent, ensuring the normal operation of the inverter. Opening a current limit for a long time may cause overheating of the inverter, $C B C$ failure is reported.

| C5.05 | Detection of current <br> compensation | Default | 5 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | $0-100$ |  |

Used to set the current detection compensation, we do not recommend to change.

| C5.06 | Setting the under voltage |  | Default | $100 \%$ |
| :--- | :---: | :---: | :---: | :---: |
|  | Setting range | $60 \%-140 \%$ |  |  |

It is used to set the LU voltage error for the low voltage of the inverter. The value of $100 \%$ of the different voltage levels of the inverter corresponds to different voltages, singlephase 220 V or three-phase 220 V : three-phase 380 V : 350 ; three-phase 690 V : 650 V .

| C5.07 | Selection SFVC optimization <br> mode |  | Default | 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | 0 | No optimization |  |
|  |  | 1 | Optimization mode 1 |  |
|  |  | 2 | Optimization mode 2 |  |

## 1: Optimization mode 1

It is used when there is a high demand for linear torque regulation.
2: Optimization mode 2
Used in case requirement for speed stability.
Group C6: FI curve setting (FI is FIV or FIC)

| C6.00 | The minimum of Fl curve 4 |  | Default | 0.0 V |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | -10.0 V - C6.02 |  |  |
| C6.01 | Corresponding FI 4 curve setting, minimum |  | Default | 0 \% |
|  | Setting range | -100 \% - +100 \% |  |  |
| C6.02 | Fl curve 4 inflexion 1 |  | Default | 3.00 V |
|  | Setting range | C6.00-C6.04 |  |  |
| C6.03 | Corresponding curve setting FI 4 inflexion 1 |  | Default | 30.0 \% |
|  | Setting range | -100\%-+100 \% |  |  |
| C6.04 | Fl curve 4 inflexion 2 |  | Default | 6.0 V |
|  | Setting range | C6.02-C6.06 |  |  |
| C6.05 | Corresponding curve setting FI 4 inflexion 2 |  | Default | 60 \% |
|  | Setting range | -100 \% - +100 \% |  |  |
| C6.06 | Fl curve 4 maximum |  | Default | 10.00 V |
|  | Setting range | C6.06-10.00 V |  |  |


| C6.07 | Corresponding FI 4 curve setting, maximum |  | Default | 100 \% |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | -100\%-+100 |  |  |
| C6.08 | Fl curve 5 minimum |  | Default | 0.0 V |
|  | Setting range | -10.0 V - C6.10 |  |  |
| C6.09 | Corresponding FI 5 curve setting, minimum |  | Default | 0 \% |
|  | Setting range | -100\% - +100 |  |  |
| C6.10 | Fl curve 5 inflexion 1 |  | Default | 3.00 V |
|  | Setting range | C6.08-C6.12 |  |  |
| C6.11 | Corresponding curve setting FI 5 inflexion 1 |  | Default | 30.0 \% |
|  | Setting range | -100\%-+100 |  |  |
| C6.12 | Fl curve 5 inflexion 2 |  | Default | 6.0 V |
|  | Setting range | C6.10-C6104 |  |  |
| C6.13 | Corresponding curve setting FI 5 inflexion 2 |  | Default | 60 \% |
|  | Setting range | -100\% - +100 |  |  |
| C6.14 | Fl curve 5 maximum |  | Default | 10.00 V |
|  | Setting range | C6.14-10.00 |  |  |
| C6.15 | Corresponding FI 5 curve setting, maximum |  | Default | 100 \% |
|  | Setting range | -100\% - +100 |  |  |

The function of curves 4 and 5 is similar to curves 1 and 3 , but curves 1 and 3 are continuous lines, and curves 4 and 5 are 4 -point curves, resulting in a more flexible relationship. Curves 4 and 5 are illustrated in the following figure.
When setting the curves 4 and 5 , note that the minimum input voltage, inflection 1 , inflection 2 , voltage 2 , and maximum curve voltage must continue to increase in this order. P5.33 (FI curve selection) is used to determine how to select a curve for FIV to FIC from five curves.


Figure 4-29 Diagram of curves 4 and 5

| C6.16 | Corresponding setting of jump point of the FIV input |  | Default | 0.0\% |
| :---: | :---: | :---: | :---: | :---: |
|  | Setting range | -100 \% - +100\% |  |  |
| C6.17 | Corresponding setting of jump amplitude of the FIV input |  | Default | 0.5 \% |
|  | Setting range | $0 \%-+100 \%$ |  |  |
| C6.18 | Corresponding setting of jump point of the FIC input |  | Default | 0.0\% |
|  | Setting range | -100 \% - +100 \% |  |  |
| C6.19 | Corresponding setting of jump amplitude of the FIC input |  | Default | 0.5 \% |
|  | Setting range | $0 \%$ - $100 \%$ |  |  |

The analog input terminals (FIV to FIC) of the V 800 inverter support the appropriate jump setting function that fixes the corresponding analog input setting at the jump point when the associated analog input setting is within the jump range.
For example, the FIV input voltage jumps around 5.00 V and the jump range is $4.90-5.10 \mathrm{~V}$. The minimum FIV 0.00 V input corresponds to $0.0 \%$ and the maximum input 10.00 V corresponds to $100.0 \%$. The detected corresponding FIV input setting is between 49.0\% and 51.0\%.
If you set the values of C6.16 to $50.0 \%$ and C 6.17 to $1.0 \%$, then after the jump function, the fixed input FIV is set to $50.0 \%$, which eliminate the fluctuation effect.

| Group C9: Special PID functions |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| C9.00 | PID sleep frequency | $0-$ P0.12 | 0.00 Hz | 0.00 Hz |  |
| C9.01 | PID sleep time | $0-5000.0 \mathrm{~s}$ | 10.0 s | 0.0 s |  |
| C9.02 | PID wake-up value | $0-100 \%$ | $60.0 \%$ | $0.0 \%$ |  |

## Group CC: Correction of FI / FO values

| CC.00 | Measured voltage FIV 1 |  | Default | Production correction |
| :--- | :--- | :--- | :---: | :---: |
|  | Setting range | $0.500 \mathrm{~V}-4.000 \mathrm{~V}$ |  |  |
| CC. 01 | Displayed voltage FIV 1 | Default | Production correction |  |
|  | Setting range | $0.500 \mathrm{~V}-4.000 \mathrm{~V}$ |  |  |
| CC. 02 | Measured voltage FIV 2 | Default | Production correction |  |
|  | Setting range | $6.000 \mathrm{~V}-9.999 \mathrm{~V}$ |  |  |


| CC. 03 | Displayed voltage FIV 2 | Default | Production correction |
| :---: | :---: | :---: | :---: |
|  | Setting range | 6.000V-9.999V |  |
| CC. 04 | Measured voltage FIC 1 | Default | Production correction |
|  | Setting range | 0.500V-4.000V |  |
| CC. 05 | Displayed voltage FIC 1 | Default | Production correction |
|  | Setting range | 0.500V-4.000V |  |
| CC. 06 | Measured voltage FIC 2 | Default | Production correction |
|  | Setting range | $6.000 \mathrm{~V}-9.999 \mathrm{~V}$ |  |
| CC. 07 | Displayed voltage FIC 2 | Default | Production correction |
|  | Setting range | -9.999V-10.000V |  |

These parameters are used for FI correction to eliminate shift of zero.
The correction was made before delivery. Once the factory values are restored, these parameters are restored to factory settings. Generally, you do not need to correct these parameters.
The measured voltage indicates the actual output voltage measured by instruments such as the multimeter. The displayed voltage corresponds to the value that the inverter samples. For details, see D0.21, D0.22. For the correction, enter two voltage values for each FI terminal and store the measured and displayed values in the function codes CC. 00 to CC.07. Then, the inverter will automatically perform a zero shift.

| CC. 12 | Measured voltage FOV 1 | Default | Production correction |
| :---: | :---: | :---: | :---: |
|  | Setting range | 0.500V-4.000V |  |
| CC. 13 | Displayed voltage FOV 1 | Default | Production correction |
|  | Setting range | 0.500V-4.000V |  |
| CC. 14 | Measured voltage FOV 2 | Default | Production correction |
|  | Setting range | 6.000V-9.999V |  |
| CC. 15 | Displayed voltage FOV 2 | Default | Production correction |
|  | Setting range | 6.000V-9.999V |  |
| CC. 16 | Reserved |  |  |
| CC. 17 | Reserved |  |  |
| CC. 18 | Reserved |  |  |
| CC. 19 | Reserved |  |  |

These parameters are used to correction of FOV.
The correction was made before delivery. Once the factory values are restored, these parameters are restored to factory settings. Generally, you do not need to correct these parameters.

The set voltage indicates the theoretical output voltage of the inverter. The measured voltage indicates the actual output voltage measured by the instruments, such as the multimeter.

## Group DO: Monitoring parameters

The group of DO parameters is used to monitor the condition of the inverter while it is running. You can view the parameter values using a control panel that is suitable for putting into operation or from a host computer via the communication interface.
Parameters D0.00 to D0.31 are monitoring parameters during run and stop defined by parameters P 7.03 and $\mathrm{P7.04}$.
See the table for more details.

| Function code | Parameter Name | Unit |
| :---: | :---: | :---: |
| D0.00 | Run Frequency (Hz) | 0.01 Hz |
| D0.01 | Set frequency (Hz) | 0.01 Hz |
| D0.02 | Bus voltage (V) | 0.1 V |
| D0.03 | Output Voltage (V) | 1V |
| D0.04 | Output current (A) | 0.01A |
| D0.05 | Output power (kW) | 0.1 kW |
| D0.06 | Output torque (\%) | 0.1\% |
| D0.07 | Input state of S | 1 |
| D0.08 | Output state of M01 | 1 |
| D0.09 | Reserved |  |
| D0. 10 | FIC voltage (V) | 0.01 V |
| D0. 11 | Reserved |  |
| D0. 12 | Counter value | 1 |
| D0. 13 | Length value | 1 |
| D0.14 | Load Speed | 1 |
| D0. 15 | PID setting | 1 |
| D0. 16 | PID Feedback | 1 |
| D0. 17 | PLC status | 1 |
| D0. 18 | Input pulse frequency | 0.01 kHz |
| D0. 19 | Speed of the electric motor | rpm |
| D0.20 | The remaining running time | 0.1 min |
| D0.21 | FIV voltage before correction | 0.001 V |
| D0.22 | FIC voltage before correction | 0.001V |
| D0.23 | Reserved |  |
| D0.24 | Linear speed | $1 \mathrm{~m} / \mathrm{min}$ |


| D0.25 | Total time under voltage | 1 min |
| :---: | :---: | :---: |
| D0.26 | Total running time | 0.1 min |
| D0.27 | Input frequency of pulse | 1 Hz |
| D0.28 | Setting of communications | $0.01 \%$ |
| D0.29 | Reserved |  |
| D0.30 | Main frequency X | 0.01 Hz |
| D0.31 | Auxiliary frequency Y | 0.01 Hz |
| D0.32 | Risplaying any memory address value |  |
| D0.33 | Reserved |  |
| D0.34 | Required torque | $0.1 \%$ |
| D0.35 | Reserved |  |
| D0.36 | Angle of the effective | 0.1 |
| D0.37 | Reserved | 1 V |
| D0.38 | Target voltage for V/F separation | 1 V |
| D0.39 | Output voltage for V/F separation |  |
| D0.40 | Reserved |  |
| D0.41 | Reserved | 0 |
| D0.42 | Reserved |  |
| D0.43 | Reserved |  |
| D0.44 | Fault information |  |
| D0.45 |  |  |

## Chapter 6: Fault checking and elimination

### 6.1 Displaying and removing fault

The V800 has a total of 28 warning and protective functions. Once a fault occurs, the protection function, the stop of the inverter output, the fault code of the inverter is displayed on the panel display. The user can analyze the cause of the problem himself, find a solution. If the failure is marked with a dotted frame, find a service or your supplier or contact our company directly.
In most cases, an OUOC alarm is caused by a hardware overvoltage.

| Fault name | Display on panels | Possible causes | Solutions |
| :---: | :---: | :---: | :---: |
| Inverter unit protection | OC | 1: The output circuit is grounded or short circuited. <br> 2: The connecting cable of the motor is too long. <br> 3: The module overheats. <br> 4: The internal connections become loose. <br> 5 :The main control board is faulty. <br> 6: The drive board is faulty. <br> 7: The inverter module is faulty | 1: Eliminate external faults. <br> 2: Install an output filter. <br> 3: Check the air filter and the cooling fan. <br> 4: Connect all cables properly. <br> 5,6,7: Find technical support |
| Overcurrent during acceleration | OC1 | 1: The output circuit is grounded or short circuited. <br> 2: Motor auto-tuning is not Performed. <br> 3: The acceleration time is too Short. <br> 4: Manual torque boost or V/F curve is not appropriate. <br> 5: The voltage is too low. <br> 6: The startup operation is performed on the rotating motor. <br> 7: A sudden load is added during acceleration. <br> 8: The inverter model has a too low power class. | 1: Eliminate external faults. <br> 2: Perform the motor autotuning. <br> 3: Increase the acceleration time. <br> 4: Adjust the manual torque boost or V/F curve. <br> 5: Adjust the voltage to normal range. <br> 6: Select rotational speed tracking restart or start the motor after it stops. <br> 7: Remove the added load. <br> 8: Select an inverter of higher power class. |


| Overcurrent at constant speed | OC2 | 1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. <br> 3: The deceleration time is too short. <br> 4: The voltage is too low. <br> 5: A sudden load is added during deceleration. <br> 6: The braking unit and braking resistor are not installed. | 1: Eliminate external faults. <br> 2: Perform the motor autotuning. <br> 3: Increase the deceleration time. <br> 4: Adjust the voltage to normal range. <br> 5: Remove the added load. <br> 6: Install the braking unit and braking resistor. |
| :---: | :---: | :---: | :---: |
| Overcurrent at constant speed | OC3 | 1: The output circuit is grounded or short circuited. <br> 2: Motor auto-tuning is not performed. <br> 3: The voltage is too low. <br> 4: A sudden load is added during operation. <br> 5: The inverter model has a too low power class. | 1: Eliminate external faults. <br> 2: Perform the motor autotuning. <br> 3: Adjust the voltage to normal range. <br> 4: Remove the added load. <br> 5: Select an inverter of higher power class. |
| Overvoltage during acceleration | OU1 | 1: The input voltage is too high. <br> 2: An external force drives the motor during acceleration. <br> 3: The acceleration time is too short. <br> 4: The braking unit and braking resistor are not installed. | 1: Adjust the voltage to normal range. <br> 2: Cancel the external force or install a braking resistor. <br> 3: Increase the acceleration time. <br> 4: Install the braking unit and braking resistor. |
| Overvoltage during deceleration | OU2 | 1: The input voltage is too high. <br> 2: An external force drives the motor during deceleration. <br> 3: The deceleration time is too short. <br> 4: The braking unit and braking resistor are not | 1: Adjust the voltage to normal range. <br> 2: Cancel the external force or install the braking resistor. <br> 4: Install the braking unit and braking resistor. |


| Overvoltage at constant speed | OU3 | 1: The input voltage is too high. <br> 2: An external force drives the motor during deceleration. | 1: Adjust the voltage to normal range. <br> 2: Cancel the external force or install the braking resistor. |
| :---: | :---: | :---: | :---: |
| Power supply fault | POFF | The input voltage is not within the allowable range. | Adjust the input voltage to the allowable range. |
| Lack of voltage | LU | 1: Instantaneous power failure occurs on the input power supply. <br> 2: The inverter's input voltage is not within the allowable range. <br> 3: The bus voltage is abnormal. <br> 4: The rectifier bridge and buffer resistor are defective. <br> 5: The drive board is defective <br> 6: The main control board is | 1: Reset the fault. <br> 2: Adjust the voltage to normal range. <br> 3, 4, 5, 6: Find technical support. |
| Inverter overload | OL2 | 1: The load is too high or another motor is connected to the motor. <br> 2: The inverter model has a too low power class. | 1: Reduce the load and check the motor and mechanical condition. <br> 2: Select an inverter of higher power class |
| Motor overload | OL1 | 1: P9.01 is set improperly. <br> 2: The load is too high or another motor is connected to the motor. <br> 3: The AC drive model is of too small power class. | 1: Set P9. 01 correctly. <br> 2: Reduce the load and check the motor and the mechanical condition. <br> 3: Select an inverter of higher power class. |
| Power output phase loss (reserved) | Lo | 1: The cable connecting the AC drive and the motor is faulty. <br> 2: The AC drive's three-phase output is unbalanced when the motor is running. <br> 3: The drive board is faulty. <br> 4: The module is faulty. | 1: Eliminate external faults. <br> 2: Check whether the motor three-phase winding is normal. <br> 3,4 : Find technical support |


| Inverter overheated | OH | 1: The ambient temperature is too temperature. <br> 2: The air filter is blocked. <br> 3: The fan is damaged. <br> 4: The thermally sensitive resistor of the module is defective. <br> 5: The inverter module is defective. | 1: Lower the ambient High. <br> 2: Clean the air filter. <br> 3: Replace the defective fen <br> 4: Replace the defective thermally sensitive resistor. <br> 5: Replace the inverter module. |
| :---: | :---: | :---: | :---: |
| External equipment fault | EF | 1: External fault signal is input via $X$. <br> 2: External fault signal is input via virtual I/O. | Reset the operation. |
| Communication fault | CE | 1: The host computer is in abnormal state. <br> 2: The communication cable is faulty. <br> 3: P028 is set improperly. <br> 4: The communication parameters in group PD are set improperly. | 1: Check the cabling of host computer. <br> 2: Check the communication cabling. <br> 3: Set P028 correctly. <br> 4:Set the communication parameters properly. |
| Contactor fault | rAy | 1: The drive board and power supply are defective. <br> 2: The contactor is defective. | 1: Replace the defective drive board or power supply board. 2: Replace the defective contactor. |
| Current detection fault | IE | 1: The HALL device is defective. <br> 2: The drive board is defective. | 1: Replace the defective HALL device. <br> 2: Replace the defective drive board. |
| Motor autotuning fault | TE | 1: The motor parameters are not set according to the nameplate. <br> 2: The motor auto-tuning times out. | 1: Set the motor parameters according to the nameplate properly. <br> 2: Check the cable connecting the inverter and the motor. |
| EEPROM read / write fault | EEP | The EEPROM chip is defective. | Replace the main control board. |
| Inverter hardware fault | OUOC | 1: Overvoltage exists. <br> 2: Overcurrent exists. | 1: Remove the overvoltage. <br> 2: Remove the overcurrent. |


| Short circuit to ground fault | GND | The motor is short circuited to the ground. | Replace the cable or motor. |
| :---: | :---: | :---: | :---: |
| Accumulative running time reached | END1 | The accumulative running time reaches the setting value. | Clear the record through the parameter initialization function. |
| Accumulative power-on time reached | END2 | The accumulative power- on time reaches the setting value. | Clear the record through the parameter initialization function. |
| Zero load | LOAD | The inverter operation current is lower than P9.64. | Check that the load is disconnected or the setting of P9.64 and P9.65 is correct. |
| PID feedback lost during running | PIDE | The PID feedback is lower than the setting of PA. 26 . | Check the PID feedback signal or set PA. 26 to a proper value. |
| Impulse current limit fault | CBC | 1: The load is too high or the rotor is blocked on the motor. 2: The inverter model has a too low power class. | 1: Reduce the load and check the motor and mechanical condition. <br> 2: Select an inverter of higher power class |
| Too large speed deviation fault | ESP | 1: The encoder parameters are set incorrectly. <br> 2: The motor auto-tuning is not performed. <br> 3:Parameters of too large speed deviation P9.69 and P9.70 are set incorrectly. | 1: Set the encoder parameters properly. <br> 2:Perform the motor autotuning. <br> 3: Set P9.69 and P9.70 correctly based on the actual situation. |
| Motor speed too high | oSP | 1: The encoder parameters are set incorrectly. <br> 2: The motor auto-tuning is not performed. <br> 3: The P9.69 and P9.70 motor speed overrun detection parameters are incorrectly set. | 1: Set the encoder parameters properly. <br> 2:Perform the motor autotuning. <br> 3: Set correctly the P9.69 and P9.70 motor speed overrun detection parameters according to actual situation |

### 6.2 Common errors and their solutions

You may encounter the following errors while using the inverter. For a simple fault analysis, see the following table.

Table 5-1 Troubleshooting common inverter faults

| SN | Fault | Possible cause | Solution |
| :---: | :---: | :---: | :---: |
| 1 | When the power is turned on, the display does not show any data. | 1: There is no power supply to the inverter or the power input to the inverter is too low. <br> 2: The power supply of the switch on the drive board of the inverter is faulty. <br> 3: The rectifier bridge is damaged. <br> 4: The control board or the operation panel is faulty. <br> 5: The cable connecting the control board and the drive board and the | 1: Check the power supply. <br> 2: Check the bus voltage. <br> 3, 4, 5: Find technical support |
| 2 | " 2000 " is displayed when the power is on. | 1: The cable between the drive board and the control board is in poor contact. <br> 2: Related components on the control board are damaged. <br> 3: The motor or the motor cable is short circuited to the ground. <br> 4: The HALL device is faulty. <br> 5: The power input to the inverter is too low. | Find technical support |
| 3 | "GND" is displayed when the power is on | 1: The motor or the motor output cable is short-circuited to the ground. 2: The AC drive is damaged. | 1: Measure the insulation of the motor and the output cable. <br> 2: Find technical support |
| 4 | The inverter's display is normal when the power is on. But " 2000 " is displayed after running and stops immediately. | 1 The cooling fan is damaged or rotor is blocked. <br> 2: The external control terminal cable is short circuited. | 1: Replace the defective fan. <br> 2: Eliminate external faults. |


| SN | Fault | Possible cause | Solution |
| :---: | :---: | :---: | :---: |
| 5 | OH (module overheat) fault is reported frequently. | 1: The setting of carrier frequency is too high. <br> 2: The cooling fan is damaged, or the air filter is blocked. <br> 3: Components inside the inverter are damaged (thermal coupler or others). | 1: Reduce the carrier frequency (P017). <br> 2: Replace the fan and clean the air filter. <br> 3: Find technical support |
| 6 | The motor does not rotate after the inverter runs. | 1: Check the motor and the motor cables. <br> 2: The inverter parameters are set improperly (motor parameters). <br> 3: The cable between the drive board and the control board is in poor contact. <br> 4: The drive board is faulty. | 1: Ensure the cable between the inverter and the motor is normal. <br> 2: Replace the motor or clear mechanical faults. <br> 3: Check and re-set motor parameters. <br> 4: Find technical support |
| 7 | The Sterminals are disabled. | 1: The parameters are set incorrectly. <br> 2: The external signal is incorrect <br> 3: The jumper bar between OP and +24 V becomes loose. <br> 4: The control board is faulty. | 1: Check and reset the parameters in group P5. <br> 2: Re-connect the external signal cables. <br> 3: Check the jumper bar between OP and +24 V . <br> 4: Find technical support |
| 8 | Reserved |  |  |
| 9 | The inverter reports overcurrent and overvoltage frequently. | 1: The motor parameters are set improperly. <br> 2: The acceleration/deceleration time is improper. <br> 3: The load fluctuates. | 1: Again set the motor or auto-tuning parameters. <br> 2: Set proper acceleration/ deceleration time. <br> 3: Find technical support |
| 10 | RAY is reported when the power is or the AC drive is running. | The contactor of soft starter is not excitated. | 1: Check whether the contactor cable is loose. <br> 2: Check whether the contactor is faulty. <br> 3: Check whether 24 V power supply of the contactor is faulty. |

## Chapter 7 Maintenance

- Maintenance must be performed according to specified maintenance methods.
- The maintenance, inspection and replacement of parts must only be carried out by a certified person.
- Wait 10 minutes before further maintenance or inspection after the main power circuit has been switched off.
- Do not touch the components or circuit boards directly. Otherwise, the drive may be damaged by electrostatic charge.
- After maintenance, all screws must be tightened.


### 7.1 Inspection

To avoid failure of the frequency inverter and to operate reliably with high power for a long period of time, the user must periodically check the inverter (at least once every five years). The following table lists the subject of the check.

| Inspected parts | Scope of inspection |
| :---: | :--- |
| Temperature / humidity | Ambient temperature shall be lower than $40^{\circ} \mathrm{C}$. Humidity shall <br> meet the requirement of $20^{\sim} 90 \%$. |
| Smoke and dust | No dust accumulation, no traces of water leakage and no <br> condensate. |
| Inverter | Check the inverter to ensure it has no abnormal heat, <br> abnormal vibration |
| Fan | Ensure the fan operation is normal, no debris stuck, etc. |
| Power | The supply voltage and frequency must be within the <br> permissible range. |
| Motor | Inspect the engine for unusual vibrations, heat, noise or phase <br> failure, etc. |
|  |  |

### 7.2 Periodic maintenance

Users should check the drive at regular intervals. The subject of the inspection is as follows:

| Inspected parts | Scope of inspection | Solution |
| :---: | :---: | :---: |
| The screws of terminals | Whether the screws of control <br> terminals are loose | Tighten screws |
| Printed circuit boards | Dust and dirt | Clean the dust on PCBs and <br> air ducts with a vacuum <br> cleaner |
| Fan | Abnormal noise, abnormal <br> vibration, whether it has used up <br> 20,000 hours | Clear dirt and replace the fan |
| Electrolytic capacitor | Whether the colour is changed <br> and the smell is abnormal | Change the electrolytic <br> capacitor |
| Heatsink | Dust and dirt | Clean the dust with a <br> vacuum cleaner. |
| Power components | Dust and dirt | Clean the dust with a <br> vacuum cleaner.. |

### 7.3 Replacement of wearing parts

Fans and electrolytic capacitors are included, replace them regularly to ensure long-term, safe and trouble-free operation. The exchange periods are as follows:

- Fan: must be replaced every 20000 hours;
- Electrolytic capacitor: replace it if it is running from 30000 to 40000 hours.


### 7.4 Warranty for the V 800 frequency inverter

### 7.4.1 Inverter tests

The manufacturer has thoroughly checked and pre-programmed the frequency converter before shipping. The product features of the V800 correspond to the technical documentation provided that it is installed and used in accordance with the instructions and recommendations given in the technical documentation and in the operating instructions.

| Tested circuit |  | Test result | The relevant standard |
| :---: | :---: | :---: | :---: |
| Insulation resistance |  | $>1 \mathrm{M} \Omega$ | GB12668 |
| Insulation strength |  | 2-5kV AC; 60s leakage current <1mA | GB12668 |
| ESD | Contact discharge | +/-4kV | EN61000-4-2 |
|  | Air discharge | +/-8kV |  |
|  | Discharge on connections | +/-4kV |  |
| EFT | RST | +/-4kV | EN61000-4-4 |
|  | UVW | +/-2kV |  |
|  | Signal pathways | +/-2.5kV |  |
| Overvoltage in wiring | Interphase | +/-2kV | EN61000-4-5 |
|  | Opposite direction | +/-4kV |  |
| CS test (frequency range $150 \mathrm{kHz}-80 \mathrm{MHz}$ |  | 10 V (e.m.f.) | EN61000-4-6 |

### 7.4.2 Warranty period

The warranty period is 24 months from the date of sale of the product.

### 7.4.3 Warranty terms

The warranty covers only defects and faults that have arisen from the manufacturing error or the materials used. The warranty is prolonged by the time the frequency inverter has been repaired.
The buyer applies warranty repairing at the manufacturer. The buyer will ship the inverter for repair to the seller at his own expense.

### 7.4.4 The warranty does not apply to defects caused

a./ Buyer-user's fault in the case of mechanical damage (for example, when transporting or falling) or when used in contravention of technical documentation, faulty connection or using incorrect breaker, if the fault has been caused by undue interference with the product.
b./ Damage to the device through external influences (dusting of internal parts of the inverter, humidification of internal circuits) and natural disasters (effects of high overvoltages e.g. due to lightning, fire, water flooding, etc.)
c/. Incorrect storage, improper connection, damage by external influences, especially the effects of electrical quantities of inadmissible size.

## C

## DECLARATION OF CONFORMITY

## We:

## VYBO Electric a.s.

Radlinského 18
05201 Spišská Nová Ves
Slovak republic
IČO: 45537143
Hereby declare under our sole responsibility, that the products:

```
Frequency inverters V800-2S....; V800-4T ....; V810-2S....; V810-4T....;
    V900-2S....; V900-4T ....;
```

Are in conformity with the requirements of the following directives and conformity was checked in accordance with the following standards.

Directives:
LV Directive 2014/35EU
EMC Directive 2014/30/EU
Eco design Directive 2006/42/EC
Machine Directive 2006/42/EC
Harmonized standards:
EN 61800-5-1:2007+A1:2017
EN 61800-5-1:2007+A11:2021
EN 61800-3:2004+A1:2012
Spišská Nová Ves, 04.11.2022


[^0]
## Annex A <br> Communication protocol V 800

The V 800 series provides the RS232 / RS485 communication interface and supports the MODBUS communication protocol. The user can connect with a computer or centrally controlled PLC. Through the communication protocol, it can set the inverter, send commands, modify or read function parameters, read the status of the inverter, fault information, etc.

## 1. Content of the protocol

The serial communication protocol defines the serial communication transmission of information content and format. If an error occurred while receiving the information from device or don't meet the host's requirements, feedback will be sent to the user.

## 2. Application methods

Application mode with RS232 / RS485 with bus accessible from the main control network via PC / PLC.

## 3. Bus structure

(1) Hardware interface RS232 / RS485
(2) Asynchronous serial transmission mode, half-duplex transmission mode. At the same time, only the host can send data and the other party can only receive the data. Data in the serial asynchronous communication process, form of message, frame for sending.
(3) The topological structure is based on one host system. Transmitter addresses are set to 1-247. The transmitter has address 0 .
(4) Each device address must be unique in the network.

## 4. Protocol description

The V 800 series has an asynchronous serial port for the MODBUS communication protocol on the master-slave principle. The network has only one device (host) that can send a "query / command". Another device can only provide answers to the question of the master device and perform the appropriate action. The host is in this case personal computer (PC), industrial control device or programmable logic controller (PLC), etc. The host can communicate with the device separately from the computer.

## 5. Communications data structure

The structure of the V 800 series communication data structure in the MODBUS communication format is as follows: In RTU mode, messages are sent in frames that begin and end with a 3.5 character spacing. The transmitting device is the first domain address.

The transmitted characters are in the hexadecimal system and use numbers 0-9 and letters A to F. Once the message is received, each device detects an address and checks if the message belongs to it. The last character is followed by a space of 3.5 characters. The new message starts after this pause.
The entire message framework must be a continuous flow of transmission. If the time frame to complete the transfer is more than 1.5 characters before of the space, the receiving device resumes an incomplete message and assumes that the next byte is a new message.
Also, if the new message has less than 3.5 characters, the receiving device assumes it is a continuation of the previous message.
The result will be an error because the CRC checksum field cannot be correct.

Rámec RTU má formát:

| Beginning of the message | 3.5 of character |
| :---: | :---: |
| Recipient address | address 1-247 |
| The code of the desired CMD function | 03: reading one 16-bit register; 06 : writing one 16 -bit register |
| Data section DATA ( $\mathrm{N}-1$ ) | Information content: function code parameter address, function code, parameter number, function code parameter values, etc.. |
| Data section DATA ( $\mathrm{N}-2$ ) |  |
| ...... |  |
| Data section DATA 0 |  |
| Checksum CRC CHK, higher byte | Checksum CRC CHK |
| Checksum CRC CHK, lower byte |  |
| End of the message | 3.5 of character |

CMD (command) and DATA (description of data word) command code: 03 H , read N words (you can read maximum 12 words). For example, from machine address 01 at F105, you can continuously read two consecutive values:

| ADR | 01 H |
| :---: | :---: |
| CMD | 03 H |
| upper byte of address | F1H |
| bottom byte of address | 05 H |
| upper byte of register | 00 H |
| bottom byte of register of register | 02 H |
| checksum CRC CHK, higher byte | waits for CRC CHK calculation |
| checksum CRC CHK, lower byte |  |

As a reply from slave device.
Set PD. 05 to 0:

| ADR | 01 H |
| :---: | :---: |
| CMD | 03 H |
| upper byte | 00 H |
| bottom byte | 04 H |
| upper byte $\mathrm{FOO2H}$ | 00 H |
| bottom byte $\mathrm{FOO2H}$ | 00 H |


| Data upper byte FOO3H | 00 H | 00 H |
| :---: | :---: | :---: |
| Data lower byte FOO3H | 01 H | 04 H |
| Checksum CRC CHK, lower byte | Waits for CRC | 00 H |
|  | Checksum CRC CHK, higher byte | CHK calculation |

Set PD. 05 to 1:

| ADR | 01 H |
| :---: | :---: |
| CMD | 03 H |
| upper byte | 00 H |
| bottom byte | 04 H |
| upper byte FOO2H | 00 H |
| bottom byte FOO2H | 00 H |
| Data upper byte $\mathrm{FOO3H}$ | 00 H |
| Data lower byte FOO3H | 01 H |
| Checksum CRC CHK, lower byte | Waits for CRC CHK calculation |
| Checksum CRC CHK, higher byte |  |

Command code: 06 H writes the word. For example, write $000(\mathrm{BB} 8 \mathrm{H})$ to the slave device.
Address F00AH of inverter 05 H .
Command:

| ADR | 05 H |
| :---: | :---: |
| CMD | 06 H |
| The upper byte of the data address | FOH |
| The lower byte of the data address | OAH |
| Data upper byte | OBH |
| Data lower byte | B8H |
| Checksum CRC CHK, lower byte | Waits for CRC CHK calculation |
| Checksum CRC CHK, higher byte |  |

Response from slave device:

| ADR | 02 H |
| :---: | :---: |
| CMD | 06 H |
| The upper byte of the data address | FOH |
| The lower byte of the data address | OAH |
| Data upper byte | 13 H |
| Data lower byte | 88 H |
| Checksum CRC CHK, lower byte | Waits for CRC CHK calculation |
| Checksum CRC CHK, higher byte |  |

CRC Check: RTU uses CRC control. The report contains a CRC-based error detection field. The CRC area tests the entire content of the message. The CRC consists of two bytes, respectively. 16 bits. The value is calculated by the transmitting device and added to the message. The receiving device also calculates it and compares it with the CRC value in the received message.

The Cyclic Redundancy Check (CRC) is calculated using the following steps:
Step 1: Fill a 16-bit register (called CRC) with FFFFH.
Step 2: Calculate the XOR with the first byte command with the lower byte of the 16bit CRC Registry, store the result in the CRC register.
Step 3: Check the LSB of the CRC registry.
Step 4: If the LSB of the CRC is 0 , move the CRC register one bit to the right and fill the MSB by zero, then repeat step 3. If the LSB of the CRC is 1 , move the CRC register one bit to the right and fill the MSB by zero, calculate the XOR of the CRC register with the polynomial A 001 H , then repeat step 3.
Step 5: Repeat steps 3 and 4 until eight shifts are performed. After eight shifts, the result is a complete 8-bit byte.
Step 6: Repeat steps 2 through 5 for the next 8-bit command-byte. Continue until all bytes are processed. The final content of the CRC is CRC value. For CRC transmission in the report, the upper and lower bytes of the CRC values need to be changed, so the lower byte will be transmitted first.

The program for the CRC function is as follows:

```
    unsignedintcrc_cal_value(unsignedchar *data_value,unsignedchardata_length)
{
int i;
unsignedintcrc_value=Oxffff;
while(data_length--)
f
crc_value^=*data_value++;
for(i=0;i<8;i++)
{
```

```
If(crc_value&0x0001) crc_value=(crc_value»1 )^0xa001;
else
crc_value=crc_value»1;
    }
}
Retum(crc_value);
}
```

Define the communication parameters address. This section is the communication content that is used to control the inverter, inverter status, and parameter setting. Reading and writing function code parameters (some code that cannot be changed is for manufacturers only or for monitoring). Rules for function code parameter addresses: higher byte F0-FF (P group), A0-AF (C group), 70-7F (D group), lower byte: 00-FF.
E.g. P3.12, the address is expressed as F30C; PF group: parameters do not change; D group: read-only, parameters cannot be changed.
If some of the inverter parameters are in operation, do not change them. Some inverter parameters in any state cannot be changed.
Additionally, because it is often written to EEPROM, its lifetime may be shortened, so if some of the function codes in the communication mode do not have to be stored, just change the RAM value. If a parameter group $P$ is used, the corresponding function can be addressed from $F$ to 0 . If it is a $C$ group of parameters, the corresponding function can be addressed from A to 4.

The corresponding function codes are as follows: higher byte: 00 to 0 F (group P), 40 to 4F (group B), lower byte: 00 to FF.
Function code P3.12 is not stored in EEPROM, the address is expressed as 030C. Function code CO-05 is not stored in EEPROM, address is expressed as 4005. Interpreting an address can only write to RAM, it cannot read, it's an invalid address when it's read. For all parameters, you can also use the 7 H command code to implement this feature.
Set the inverter to control via communication: P0.02=2 and P0.04=9

## Directory of MODBUS communication parameters

Parameters for START / STOP

| Parameter address | Parameter description |  |
| :---: | :---: | :---: |
| 1000 | Desired frequency (-10000 to 10000) (decimal system ) | Write/Read |
| 1001 | Operating frequency | Read |
| 1002 | Bus voltage | Read |
| 1003 | Output voltage | Read |
| 1004 | Current output | Read |
| 1005 | Output power | Read |
| 1006 | Output torque | Read |
| 1007 | Speed of running | Read |
| 1008 | S Input Flag | Read |
| 1009 | M01 output Flag | Read |
| 100A | FIV voltage | Read |
| 100B | FIC voltage | Read |
| 100C | Reserved | Read |
| 100D | Counter input | Read |
| 100E | Length input | Read |
| 100F | Speed of loading | Read |
| 1010 | PID setting | Read |
| 1011 | PID Feedback | Read |
| 1012 | PLC steps | Read |
| 1013 | Impulse input frequency, unit 0.01 kHz | Read |
| 1014 | Reserved | Read |
| 1015 | The remaining running time | Read |
| 1016 | FIV before correction voltage | Read |
| 1017 | FIC before correction voltage | Read |
| 1018 | Reserved | Read |
| 1019 | Linear speed | Read |
| 101A | Current period while power is on | Read |
| 101B | Current run time | Read |
| 101C | Pulse input frequency, unit 1 Hz | Read |
| 101D | Set up of communication | Read |
| 101E | Reserved | Read |
| 101F | Displaying the main $X$ frequency | Read |
| 1020 | Displaying the auxiliary Y frequency | Read |

## Warning for 1000 H :

The value of the required frequency is a relative percentage value, 10000 corresponds to $100.00 \%$. The size of the frequency data is given as a percentage of the maximum frequency (P0.12); P2.10. For example, if this frequency is 50 Hz , and
you set the register 1000 H to 5000 , the inverter will control the motor with a frequency of 25 Hz (50\%).
Reading the inverter registers is command \#3 (Read holding register).
Writing to the inverter registers is command \#6 (Pre-set holding register).

## Inverter control commands (write only):

| The address of command | Command function |
| :---: | :---: |
| 2000 | 0001: run forward |
|  | 0002: reverse run |
|  | 0003: normal rotation |
|  | 0004: reverse motion |
|  | 0005: deceleration by inertia |
|  | 0006: slowdown |
|  | 0007: RESET errors |

Reading inverter status (read only):

| The address of command | Command function |
| :---: | :---: |
| 3000 | 0001: run forward |
|  | 0002: reverse run |
|  | 0003: STOP |

Password lock parameters (if 8888 H returns, it means that the password was checked):

| Password address | Content of input password |
| :---: | :---: |
| 1F00 | $* * * * *$ |
| The address of command | Content of command |
|  | BIT 0: (reserved) |
| BIT1: (default) |  |
| 2001 | BIT2: RA-RB-RC controlled output |
|  | BIT3: reserved |
|  | BIT4: M01 controlled output |

FOV analogue output control (write only):

| The address of command | Content of command |
| :---: | :---: |
| 2002 | $0-7 F F F$ correspond to $0 \% \sim 100 \%$ |

Analogue output control: (reserved):

| The address of command | Content of command |
| :---: | :---: |
| 2003 | 0-7FFF correspond to $0 \% \sim 100 \%$ |

Impulse output control (PULSE), (write only):

| The address of command | Content of command |
| :---: | :---: |
| 2004 | $0-7 F F F$ correspond to $0 \% \sim 100 \%$ |

## Inverter fault description:

| Inverter fault address | Inverter fault information |
| :---: | :---: |
|  | Parameter description (read only) |
| 8000 | ```0000: no error 0001: reserved 0002: overcurrent at acceleration 0003: overcurrent at deceleration 0004: overcurrent at constant speed 0005: overvoltage at acceleration 0006: overvoltage at deceleration 0007: overvoltage at constant speed 0008: fault brake resistance overload 0009: low voltage 000A: overloaded inverter 000B: overloaded motor 000C: reserved 000D: output phase OOOE: overheated inverter 000F: external error 0010: communication error 0011: contactor error 0012: current detection error 0013: auto tuning error 0014: reserved 0015: parameter error, write and read 0016: hardware error of the inverter 0017: motor short circuit to ground 0018: reserved 0019: reserved 001A: reached running time 001B: reserved 001C: reserved 001D: reached time of power on 001E: zero load 001 F: loss of PID feedback while running 0028: current limitation error 0029: failure of switching the motor during running 002A: too high speed deviation 002B: too high motor speed 002D: overheated motor 005A: encoder error 005B: unconnected encoder 005C: Initial position error 005E: fault of the speed feedback``` |


| Inverter fault address | Inverter fault information |
| :---: | :--- |
| 8001 | 0000: no error |
|  | 0001: password error |
|  | 0002: command code error |
|  | 0003: CRC error |
|  | 0004: invalid address |
|  | 0005: invalid parameter |
|  | 0006: correction parameter is invalid |
|  | 0007: the system is locked |
|  | $0008:$ blocked EPROM operation |

Communication parameters of group PD

| PD. 00 | Baud speed | Set value | 0005 |
| :---: | :---: | :---: | :---: |
|  | Range of setting | units: MODBUS |  |
|  |  | 0:300 BPS |  |
|  |  | 1:600 BPS |  |
|  |  | 2:1200 BPS |  |
|  |  | 3:2400 BPS |  |
|  |  | 4:4800 BPS |  |
|  |  | 5:9600 BPS |  |
|  |  | 6:19200 BPS |  |
|  |  | 7:38400 BPS |  |
|  |  | 8:57600 BPS |  |
|  |  | 9:115200 BPS |  |

This parameter is used to set the baud rate between the inverter and the PC. Note that setting the baud rate between parent and slave devices must be the same. Otherwise, communication is not possible. Higher speed means greater data transfer.

| PD. 01 | Data format | Set value 3 |
| :---: | :---: | :---: |
|  | Range of setting | 0 : No parity, data format $<8, \mathrm{~N}, 2>$ <br> 1: Even parity, data format $\langle 8, E, 1\rangle$ <br> 2: Odd parity, data format $\langle 8,0,1\rangle$ <br> 3: No parity, data format <8, N, 1> |

The PC and the data format set by the inverter must be the same, otherwise communication cannot be established.

| PD. 02 | Data format | Set value | 1 |
| :---: | :---: | :---: | :---: |
|  | Range of setting | $1-247,0$ is the sending address |  |

When the device address is set to 0 , it means that the device is transmitting.
The device address is unique (with the exception of the broadcast address) and is intended to guarantee peer-to-peer communication between the machine and the inverter.

| PD. 03 | Data format | Set value | 2 ms |
| :---: | :---: | :---: | :---: |
|  | Range of setting | $0-20 \mathrm{~ms}$ |  |

Response delay: the time the device accepts the data you are sending. If the response delay is less than the system processing time, the delay of the response will be within the system processing time; if the response delay is longer than the data processing in the system, the system will prolong waiting for the response.

| PD. 04 | Communication <br> timeout | Set value | 0 |
| :---: | :---: | :---: | :---: |
|  | Range of setting | 0.0 s (invalid), 0.1-60.0s |  |

If the code is set to 0.0 s , the parameter is invalid.
If the function code is set to valid values and the communication and time interval of the next communication is greater than the communication time limit, the system will report a communication failure (CE) error. Typically, the set value is invalid. If time is set in the parameter, you can track the status of the communication.

| PD. 05 | Selection the <br> communication | Set value | 1 |
| :---: | :---: | :---: | :---: |
|  | Range of setting | 0: nonstandard protocol MODBUS <br> 1: standard protocol MODBUS |  |

PD. 05 = 1: standard MODBUS protocol selected
PD. 05 =0: when reading the command, it returns the number of bytes from the device according to the MODBUS protocol, described in detail in this chapter.

| PD. 06 | Resolution of <br> reading the value <br> current | Set value | 1 |
| :---: | :---: | :---: | :---: |
|  | Range of setting | $0: 0.01 \mathrm{~A}$ |  |
|  |  |  |  |

Used to select communication when reading the output current, the actual value of the output units.

## We reserve the right to typographical errors in the text


[^0]:    Ing. Babeta Výboštoková
    Vice Chairman

